1 |
Davarpanah E, Armandi M, Hernandez S, et al. CO2 capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites [J]. Journal of Environmental Management, 2020, 275(11): 111229.
|
2 |
王守桂,朱庆书,陈玲,等. 负载型CO2吸附剂的研究进展[J].化工设计通讯,2019,45(11): 144.
|
3 |
刘珊珊,柴玉超,关乃佳,等. 分子筛在小分子吸附分离中的应用[J].高等学校化学学报,2021,42(1): 268⁃288.
|
4 |
马宇彤,胡云峰,刘宏鹏.吸附分离天然气中CO2的分子筛研究进展[J].精细石油化工,2018,35(2):70⁃74.
|
5 |
Amir M N, Saeed S, Farhad K, et al., Effect of binder on CO2, CH4, and N2 adsorption behavior, structural properties, and diffusion coefficients on extruded zeolite 13X[J]. Chemosphere, 2023, 324: 138275.
|
6 |
Khan A U, Noor T, Iqbal N, et al., CO2 adsorption study of the zeolite imidazolate framework (ZIF⁃8) and its g⁃C3N4 composites[J]. Journal of Materials Science, 2023, 58(9): 3947⁃3959.
|
7 |
Canada⁃Barcala A, Larriba M, Mate V I A, et al. CO2 methanation enhanced with a cyclic SERP process using a commercial Ni⁃based catalyst mixed with 3A zeolite as adsorbent[J].Chemical Engineering Journal, 2023, 461: 141897.
|
8 |
惠海涛.Y型分子筛在环保领域的应用[J].环境与发展,2019, 31(6):221⁃222.
|
9 |
杨玲, 张乐, 宋丽娟. 稀土离子浓度对Y型分子筛传质动力学的影响[J].石油化工高等学校学报, 2017, 30(6): 11⁃5.
|
10 |
Krachuamram S, Chanapattharapol K C, Kamonsutthipaijit N. Synthesis and characterization of NaX⁃type zeolites prepared by different silica and alumina sources and their CO2 adsorption properties[J]. Microporous and Mesoporous Materials, 2021, 310(13): 110632.
|
11 |
贾会珍. NaY分子筛的合成及应用其合成多孔碳的工艺研究[D].石家庄: 河北科技大学,2016.
|
12 |
王建国,秦张峰,郭向云.计算机模拟在分子筛研究中的应用[J] .燃料化学学报,1999,27(S): 149⁃157.
|
13 |
方玉堂,李大艳,高学农,等. 稀土改性分子筛的表征与性能[J].化学学报,2011,62 (6): 1581⁃1586.
|
14 |
Yang K, Wu J, Li C, et al. Efficient method to obtain the force field for CO2 adsorption on zeolite 13X: Understanding the host⁃guest interaction mechanisms of low⁃pressure adsorption [J]. Journal of Physical Chemistry C, 2020, 124(1): 544⁃556.
|
15 |
Avijegon G, Xiao G K, Li G, et al. Binary and ternary adsorption equilibria for CO2/CH4/N2 mixtures on Zeolite 13X beads from 273 to 333 K and pressures to 900 kPa [J]. Adsorption⁃Journal of the International Adsorption Society, 2018, 24(4): 381⁃392.
|
16 |
Vosoughi M, Maghsoudi H, Gharedaghi S. Ion⁃exchanged ETS⁃10 adsorbents for CO2/CH4 separation: IAST assisted comparison of performance with other zeolites [J]. Journal of Natural Gas Science and Engineering, 2021, 88(9): 103862.
|
17 |
Rogacka J, Seremak A, Luna⁃Triguero A, et al. High⁃throughput screening of metal⁃organic frameworks for CO2 and CH4 separation in the presence of water [J]. Chemical Engineering Journal, 2021, 403: 126392.
|
18 |
Dahmani R, Grubisic S, Djordjevic I, et al. In silico design of a new Zn⁃triazole based metal⁃organic framework for CO2 and H2O adsorption [J]. Journal of Chemical Physics, 2021, 154(2):024303.
|
19 |
Chang M, Ren J, Yang Q, et al. A robust calcium⁃based microporous metal⁃organic framework for efficient CH4/N2 separation [J]. Chemical Engineering Journal, 2021, 408: 127294.
|
20 |
Zheng H M, Zhao L, Yang Q, et al. Insight into the adsorption mechanism of benzene in HY zeolites: The effect of loading[J]. RSC Advances,2016,6(41): 34175⁃34187.
|
21 |
Lu X Q, Wang M. Theoretical investigation on adsorption and separation of CO2/N2 in hybrid ultramicroporous materials [J]. Journal of Inorganic Materials, 2020, 35(4): 469⁃474.
|
22 |
Dann S E, Mead P J, Mark T, et al. Lowenstein's rule extended to an aluminum rich framework: The structure of bicchulite, Ca8(Al2SiO6)4(OH)8, by MASNMR and neutron diffraction[J]. Inorganic Chemical,1996,35(6): 1427⁃1428.
|
23 |
Hill J R, Sauer J. Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica[J].Journal of Physical Chemistry C, 1994, 98: 1238⁃1244.
|
24 |
Myers A L, Prausnitz J M. Thermodynamics of mixed⁃gas adsorption[J]. AIChE Journal, 1965, 11: 121⁃127.
|