1 |
LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
|
2 |
ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751.
|
3 |
颜冬, 张舒冬, 李昱颖, 等. 双碳基电极锂离子电容器的研究进展[J]. 当代化工, 2023, 52(7): 1721-1728.
|
|
YAN D, ZHANG S D, LI Y Y, et al. Research progress of lithium-ion capacitors with double carbon-based electrodes[J]. Contemporary Chemical Industry, 2023, 52(7): 1721-1728.
|
4 |
TARASCON J M. Na-ion versus Li-ion batteries: Complementarity rather than competitiveness[J]. Joule, 2020, 4(8): 1616-1620.
|
5 |
USISKIN R, LU Y X, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6(11): 1020-1035.
|
6 |
靳爱民. 钠离子电池是锂离子电池的有效替代品[J]. 石油炼制与化工, 2021, 52(1): 19.
|
|
JIN A M. Sodium-ion batteries are a viable alternative to lithium-ion batteries[J]. Petroleum Processing and Petrochemicals, 2021, 52(1): 19.
|
7 |
吴希, 孙博, 刘银东, 等. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283.
|
|
WU X, SUN B, LIU Y D, et al. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries[J]. CIESC Journal, 2024, 75(4): 1270-1283.
|
8 |
苑雪, 李洪基, 白文慧, 等. 生物质衍生碳基材料在钠离子电池负极中的应用[J]. 储能科学与技术, 2023, 12(3): 721-742.
|
|
YUAN X, LI H J, BAI W H, et al. Application of biomass-derived carbon-based anode materials in sodium ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 721-742.
|
9 |
张洁, 杨占旭. 钠离子电池负极材料的研究进展[J]. 辽宁石油化工大学学报, 2016, 36(1): 7-11.
|
|
ZHANG J, YANG Z X. The progress of sodium-ion battery anode material[J]. Journal of Liaoning Shihua University, 2016, 36(1): 7-11.
|
10 |
张博, 郄佳鑫, 曹永安, 等. 基于可视化分析辅助探究钠离子电池硬碳负极研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 1-9.
|
|
ZHANG B, XI J X, CAO Y A, et al. Research progress of hard carbon anode of sodium-ion batteries based on visualization analysis[J]. Journal of Petrochemical Universities, 2022, 35(6): 1-9.
|
11 |
KIM H, HYUN J C, KIM D H, et al. Revisiting lithium-and sodium-ion storage in hard carbon anodes[J]. Advanced Materials, 2023, 35(12): 2209128.
|
12 |
SUN N, QIU J S, XU B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate[J]. Advanced Energy Materials, 2022, 12(27): 2200715.
|
13 |
POL V G, LEE E, ZHOU D H, et al. Spherical carbon as a new high-rate anode for sodium-ion batteries[J]. Electrochimica Acta, 2014, 127: 61-67.
|
14 |
WANG H L, SHI Z Q, JIN J, et al. Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method[J]. Journal of Electroanalytical Chemistry, 2015, 755: 87-91.
|
15 |
AU H, ALPTEKIN H, JENSEN A C S, et al. A revised mechanistic model for sodium insertion in hard carbons[J]. Energy & Environmental Science, 2020, 13(10): 3469-3479.
|
16 |
杨翠云, 杨成浩. 钠离子电池硬炭负极材料的研究进展[J]. 高等学校化学学报, 2023, 44(5): 129-144.
|
|
YANG C Y, YANG C H. Recent progress of hard carbon anode materials for sodium ion batteries[J]. Chemical Journal of Chinese Universities, 2023, 44(5): 129-144.
|
17 |
LI Y M, LU Y X, ZHAO C L, et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials, 2017, 7: 130-151.
|
18 |
胡文晨, 牛犇, 张君涛, 等. 木质素衍生酚气相加氢脱氧研究进展[J]. 低碳化学与化工, 2023, 48(4): 29-35.
|
|
HU W C, NIU B, ZHANG J T, et al. Research progress on vapor phase hydrodeoxygenation of lignin-derived phenols[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(4): 29-35.
|
19 |
罗竞, 肖长烨. 纤维素基气凝胶及其在水处理中的应用研究进展[J]. 化工环保, 2024, 44(4): 463-468.
|
|
LUO J, XIAO C Y. Research progress of cellulose-based aerogel and its application in water treatment[J]. Environmental Protection of Chemical Industry, 2024, 44(4): 463-468.
|
20 |
马彦琪, 林梅钦, 董朝霞, 等. 纳米纤维素增强的高机械强度聚丙烯酰胺复合水凝胶[J]. 油田化学, 2023, 40(4): 608-613.
|
|
MA Y Q, LIN M Q, DONG C X, et al. Polyacrylamide composite hydrogel with high mechanical strength reinforced by nanocrystalline cellulose[J]. Oilfield Chemistry, 2023, 40(4): 608-613.
|
21 |
XIE L J, TANG C, SONG M X, et al. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review[J]. Journal of Energy Chemistry, 2022, 72: 554-569.
|
22 |
ZHAO B Y, LI X T, SHANG L, et al. Regulating oxygen functionalities of cellulose-derived hard carbon toward superior sodium storage[J]. Journal of Materials Chemistry A, 2024, 12(10): 5834-5845.
|
23 |
宋赛鹰. 生物基炭微球的水热法制备及其电化学性能研究[D]. 北京: 北京化工大学, 2019.
|
24 |
PARK S, BAKER J O, HIMMEL M E, et al. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance[J]. Biotechnology for Biofuels, 2010, 3: 10.
|
25 |
LIU Y X, LIU L H, WANG K T, et al. Modified ammonium persulfate oxidations for efficient preparation of carboxylated cellulose nanocrystals[J]. Carbohydrate Polymers, 2020, 229: 115572.
|
26 |
SALEM K S, KASERA N K, RAHMAN M A, et al. Comparison and assessment of methods for cellulose crystallinity determination[J]. Chemical Society Reviews, 2023, 52(18): 6417-6446.
|
27 |
CIOLACU D, CIOLACU F, POPA V I, et al. Amorphous cellulose-structure and characterization[J]. Cellulose Chemistry and Technology, 2011, 45(1-2): 13-21.
|
28 |
NIU J, SHAO R, LIANG J J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy, 2017, 36: 322-330.
|
29 |
DONG Y, ZHANG S, DU X, et al. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling[J]. Advanced Functional Materials, 2019, 29(24): 1901127.
|
30 |
CAI C C, CHEN Y A, HU P, et al. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage[J]. Small, 2022, 18(6): e2105303.
|
31 |
CHEN G Y, JIANG Z P, LI A, et al. Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation[J]. Journal of Materials Chemistry A, 2021, 9(31): 16805-16813.
|
32 |
LI Y Q, LU Y X, MENG Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852.
|
33 |
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931.
|
34 |
LI S, QIU J X, LAI C, et al. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries[J]. Nano Energy, 2015, 12: 224-230.
|
35 |
CHEN Y X, SHI L L, GUO S S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19866-19874.
|
36 |
WANG S Q, XIA L, YU L, et al. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability[J]. Advanced Energy Materials, 2016, 6(7): 1502217.
|