1 |
KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741.
|
2 |
LEVENTIS N, SOTIRIOU⁃LEVENTIS C, ZHANG G H, et al. Nanoengineering strong silica aerogels[J]. Nano Letters, 2002, 2(9): 957⁃960.
|
3 |
GARCÍA⁃GONZÁLEZ C A, ALNAIEF M, SMIRNOVA I. Polysaccharide⁃based aerogels⁃promising biodegradable carriers for drug delivery systems[J]. Carbohydrate Polymers, 2011, 86(4): 1425⁃1438.
|
4 |
BETZ M, GARCÍA⁃GONZÁLEZ C A, SUBRAHMANYAM R P, et al. Preparation of novel whey protein⁃based aerogels as drug carriers for life science applications[J]. The Journal of Supercritical Fluids, 2012, 72: 111⁃119.
|
5 |
WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society, 2010, 132(40): 14067⁃14069.
|
6 |
杨立军, 喜恒坤. 热敏可逆凝胶调剖剂的研制与应用[J]. 大庆石油学院学报, 2011, 35(3): 55⁃59.
|
|
YANG L J, XI H K. Preparation and application of thermotropic reversible gel profile control agent[J]. Journal of Daqing Petroleum Institute, 2011, 35(3): 55⁃59.
|
7 |
VAREDA J P, VALENTE A J M, DURÃES L. Heavy metals in iberian soils: Removal by current adsorbents/amendments and prospective for aerogels[J]. Advances in Colloid and Interface Science, 2016, 237: 28⁃42.
|
8 |
MALEKI H, DURÃES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non⁃Crystalline Solids, 2014, 385: 55⁃74.
|
9 |
PAYEN A. Composition de la matie religneuse[J]. Comptes Rendus, 1839, 8: 51⁃53.
|
10 |
NECHYPORCHUK O, BELGACEM M N, BRAS J. Production of cellulose nanofibrils: A review of recent advances[J]. Industrial Crops and Products, 2016, 93: 2⁃25.
|
11 |
DUFRESNE A. Nanocellulose: A new ageless bionanomaterial[J]. Materials Today, 2013, 16(6): 220⁃227.
|
12 |
KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: Fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44(22): 3358⁃3393.
|
13 |
MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941⁃3994.
|
14 |
YI T, ZHAO H Y, MO Q, et al. From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils[J]. Materials, 2020, 13(22): 5062.
|
15 |
ZHU H L, LUO W, CIESIELSKI P N, et al. Wood⁃derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016, 116(16): 9305⁃9374.
|
16 |
HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: Chemistry, self⁃assembly, and applications[J]. Chemical Reviews, 2010, 110(6): 3479⁃3500.
|
17 |
TSIOPTSIAS C, STEFOPOULOS A, KOKKINOMALIS I, et al. Development of micro⁃and nano⁃porous composite materials by processing cellulose with ionic liquids and supercritical CO2[J]. Green Chemistry, 2008, 10(9): 965⁃971.
|
18 |
WANG X Y, ZHANG Y, JIANG H, et al. Tert⁃butyl alcohol used to fabricate nano⁃cellulose aerogels via freeze⁃drying technology[J]. Materials Research Express, 2017, 4(6): 065006.
|
19 |
LONG L Y, WENG Y X, WANG Y Z. Cellulose aerogels: Synthesis, applications, and prospects[J]. Polymers, 2018, 10(6): 623.
|
20 |
FAN W T, DU J J, KOU J F, et al. Hierarchical porous cellulose/lanthanide hybrid materials as luminescent sensor[J]. Journal of Rare Earths, 2018, 36(10): 1036⁃1043.
|
21 |
EBRAHIMI A, DAHRAZMA B, ADELIFARD M. Facile and novel ambient pressure drying approach to synthesis and physical characterization of cellulose⁃based aerogels[J]. Journal of Porous Materials, 2020, 27(4): 1219⁃1232.
|
22 |
NGUYEN D D, VU C M, VU H T, et al. Micron⁃size white bamboo fibril⁃based silane cellulose aerogel: Fabrication and oil absorbent characteristics[J]. Materials, 2019, 12(9): 1407.
|
23 |
WANG X Y, ZHANG Y, JIANG H, et al. Fabrication and characterization of nano⁃cellulose aerogels via supercritical CO2 drying technology[J]. Materials Letters, 2016, 183: 179⁃182.
|
24 |
WAN J Q, ZHANG J M, YU J, et al. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium⁃ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24591⁃24599.
|
25 |
LI Y W, JIANG H, HAN B B, et al. Drying of cellulose nanocrystal gel beads using supercritical carbon dioxide[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(5): 1651⁃1659.
|
26 |
WANG S, LU A, ZHANG L N. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016, 53: 169⁃206.
|
27 |
MARTINI R, SERRANO L, BARBOSA S, et al. Antifungal cellulose by capsaicin grafting[J]. Cellulose, 2014, 21(3): 1909⁃1919.
|
28 |
杜明俊, 杨子宁, 滕彧, 等. 保温型井下隔热油管的实验及数值模拟研究[J]. 石油化工高等学校学报, 2020, 33(4): 75⁃79.
|
|
DU M J, YANG Z N, TENG Y, et al. Experimental and numerical simulation of down hole insulated tubing[J]. Journal of Petrochemical Universities, 2020, 33(4): 75⁃79.
|
29 |
SARBATLY R, KRISHNAIAH D, KAMIN Z. A review of polymer nanofibres by electrospinning and their application in oil⁃water separation for cleaning up marine oil spills[J]. Marine Pollution Bulletin, 2016, 106(1⁃2): 8⁃16.
|
30 |
PRINCE J A, BHUVANA S, ANBHARASI V, et al. Ultra⁃wetting graphene⁃based PES ultrafiltration membrane—A novel approach for successful oil⁃water separation[J]. Water Research, 2016, 103: 311⁃318.
|
31 |
XU M M, BAO W Q, XU S P, et al. Porous cellulose aerogels with high mechanical performance and their absorption behaviors[J]. BioResources, 2016, 11(1): 8⁃20.
|
32 |
施逸帆, 孙京. 红薯生物质碳气凝胶的制备及其吸附性能[J]. 辽宁石油化工大学学报, 2022, 42(2): 8⁃14.
|
|
SHI Y F, SUN J. Preparation and adsorption abilities of biomass carbon aerogel derived from sweet potato[J]. Journal of Liaoning Petrochemical University, 2022, 42(2): 8⁃14.
|
33 |
祝金亮, 王雪枫, 何龙, 等. 超疏水型生物质复合气凝胶的制备及吸油性能评价[J]. 油田化学, 2023, 40(1): 143⁃148.
|
|
ZHU J L, WANG X F, HE L, et al. Preparation and oil absorption performance evaluation of superhydrophobic biomass composite aerogels[J]. Oilfield Chemistry, 2023, 40(1): 143⁃148.
|
34 |
MULYADI A, ZHANG Z, DENG Y L. Fluorine⁃free oil absorbents made from cellulose nanofibril aerogels[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2732⁃2740.
|
35 |
SONG Y Y, ZHOU J J, FAN J B, et al. Hydrophilic/oleophilic magnetic Janus particles for the rapid and efficient oil⁃water separation[J]. Advanced Functional Materials, 2018, 28(32): 1802493.
|
36 |
JIN C D, HAN S J, LI J P, et al. Fabrication of cellulose⁃based aerogels from waste newspaper without any pretreatment and their use for absorbents[J]. Carbohydrate Polymers, 2015, 123: 150⁃156.
|
37 |
ZHANG H, LI Y Q, XU Y G, et al. Versatile fabrication of a superhydrophobic and ultralight cellulose⁃based aerogel for oil spillage clean⁃up[J]. Physical Chemistry Chemical Physics, 2016, 18(40): 28297⁃28306.
|
38 |
LAITINEN O, SUOPAJÄRVI T, ÖSTERBERG M, et al. Hydrophobic, superabsorbing aerogels from choline chloride⁃based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 25029⁃25037.
|
39 |
ZHANG H Y, LYU S Y, ZHOU X M, et al. Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption[J]. Journal of Colloid and Interface Science, 2019, 536: 245⁃251.
|
40 |
POYRAZ S, ZHANG L, SCHRODER A, et al. Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22469⁃22477.
|
41 |
KOBAYASHI Y, SAITO T, ISOGAI A. Aerogels with 3D ordered nanofiber skeletons of liquid⁃crystalline nanocellulose derivatives as tough and transparent insulators[J]. Angewandte Chemie International Edition, 2014, 53(39): 10394⁃10397.
|
42 |
ZHAO S Y, ZHANG Z, SÈBE G, et al. Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: Improved mechanical properties promoted by nanoscale chemical compatibilization[J]. Advanced Functional Materials, 2015, 25(15): 2326⁃2334.
|
43 |
WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame⁃retardant and thermal⁃insulating properties[J]. Chemical Engineering Journal, 2020, 389: 124449.
|
44 |
BAUER T, STEINMANN W D, LAING D, et al. Thermal energy storage materials and systems[J]. Annual Review of Heat Transfer, 2012, 15: 131⁃177.
|
45 |
MAO Q J, LIU N, PENG L. Numerical investigations on charging/discharging performance of a novel truncated cone thermal energy storage tank on a concentrated solar power system[J]. International Journal of Photoenergy, 2019, 2019: 1609234.
|
46 |
KHATRI V, KATEKAR V. Helmet cooling with phase change material[J]. International Journal of Computer Applications, 2012, 10: 1⁃5.
|
47 |
AMER A, LEBEDEV V A. Thermal energy storage by using latent heat storage materials international[J]. International Journal of Scientific & Engineering Research, 2018, 9(5): 1442⁃1447.
|
48 |
LIU M L, MA A A, WU H, et al. Metal matrix⁃metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase⁃change thermal storage[J]. ACS Nano, 2015, 9(2): 1341⁃1351.
|
49 |
YANG J, TANG L S, BAI L, et al. High⁃performance composite phase change materials for energy conversion based on macroscopically three⁃dimensional structural materials[J]. Materials Horizons, 2019, 6(2): 250⁃273.
|
50 |
HUANG X B, CHEN X, LI A, et al. Shape⁃stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641⁃661.
|
51 |
LIU Z P, ZOU R Q, LIN Z Q, et al. Tailoring carbon nanotube density for modulating electro⁃to⁃heat conversion in phase change composites[J]. Nano Letters, 2013, 13(9): 4028⁃4035.
|
52 |
YANG J, LI X F, HAN S, et al. High⁃quality graphene aerogels for thermally conductive phase change composites with excellent shape stability[J]. Journal of Materials Chemistry A, 2018, 6(14): 5880⁃5886.
|
53 |
YE S B, ZHANG Q L, HU D D, et al. Core⁃shell⁃like structured graphene aerogel encapsulating paraffin: Shape⁃stable phase change material for thermal energy storage[J]. Journal of Materials Chemistry A, 2015, 3(7): 4018⁃4025.
|
54 |
CHEN X, CHENG P, TANG Z D, et al. Carbon⁃based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274.
|
55 |
PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243⁃4266.
|
56 |
HÜSING N, SCHUBERT U. Aerogels⁃airy materials: Chemistry, structure, and properties[J]. Angewandte Chemie International Edition, 1998, 37(1/2): 22⁃45.
|
57 |
DE FRANCE K J, HOARE T, CRANSTON E D. Review of hydrogels and aerogels containing nanocellulose[J]. Chemistry of Materials, 2017, 29(11): 4609⁃4631.
|
58 |
YANG J, ZHANG E W, LI X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon, 2016, 98: 50⁃57.
|
59 |
SHEN Z H, KWON S, LEE H L, et al. Cellulose nanofibril/carbon nanotube composite foam⁃stabilized paraffin phase change material for thermal energy storage and conversion[J]. Carbohydrate Polymers, 2021, 273: 118585.
|
60 |
CAO J Y, ZHAO Y, XU Y F, et al. Sticky⁃note supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(8): 3355⁃3360.
|
61 |
HUANG Y L, ZENG Y X, YU M H, et al. Recent smart methods for achieving high⁃energy asymmetric supercapacitors[J]. Small Methods, 2018, 2(2): 1700230.
|
62 |
GALLAGHER K G, TRASK S E, BAUER C, et al. Optimizing areal capacities through understanding the limitations of lithium⁃ion electrodes[J]. Journal of the Electrochemical Society, 2015, 163(2): A138.
|
63 |
LI X J, ZHANG Y, CHEN J F, et al. A cellulose⁃based interpenetrating network hydrogel electrolyte for flexible solid⁃state supercapacitors[J]. Cellulose, 2023, 30(4): 2399⁃2412.
|
64 |
ZHANG P X, LI M, JING Y D, et al. Highly flexible cellulose⁃based hydrogel electrolytes: Preparation and application in quasi solid⁃state supercapacitors with high specific capacitance[J]. Journal of Materials Science, 2023, 58(4): 1694⁃1707.
|
65 |
BHANDARI J, MISHRA H, MISHRA P K, et al. Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery[J]. International Journal of Nanomedicine, 2017, 12: 2021⁃2031.
|
66 |
LIN N, DUFRESNE A. Nanocellulose in biomedicine: Current status and future prospect[J]. European Polymer Journal, 2014, 59: 302⁃325.
|