1 |
侯芹芹,崔欣悦,宋子立,等.“碳达峰”背景下的“碳中和”措施研究分析[J].当代化工,2021,50(11):2727-2730.
|
|
HOU Q Q,CUI X Y,SONG Z L,et al.Research and analysis of "carbon neutral" measures under the background of "carbon peak"[J].Contemporary Chemical Industry,2021,50(11):2727-2730.
|
2 |
董沅武,荣家洛,李晓煜,等.碳中和愿景下页岩气压裂返排液处理技术思考[J].油田化学,2023,40(3):534-542.
|
|
DONG Y W,RONG J L,LI X Y,et al.Thinking on shale gas fracturing flowback fluid treatment technology under carbon neutral vision[J].Oilfield Chemistry,2023,40(3):534-542.
|
3 |
戴宝华,赵祺.我国石化产业碳中和路径展望[J].石油炼制与化工,2024,55(1):62-67.
|
|
DAI B H,ZHAO Q.Carbon neutrality pathway outlook for china's petrochemical industry[J].Petroleum Processing and Petrochemicals,2024,55(1):62-67.
|
4 |
刘文蕊.废旧锂离子电池关键组件回收技术研究进展[J].化工环保,2024,44(4):469-478.
|
|
LIU W R.Research progress on recycling technology of key components for spent lithium-ion batteries[J].Environmental Protection of Chemical Industry,2024,44(4):469-478.
|
5 |
曲虎,陆诗建,杨佳朋,等.双碳背景下油田清洁能源利用工艺可行性探讨[J].低碳化学与化工,2024,49(4):79-89.
|
|
QU H,LU S J,YANG J P,et al.Feasibility discussion on clean energy utilization process in oilfields under background of carbon peaking and carbon neutrality[J].Low-Carbon Chemistry and Chemical Engineering,2024,49(4):79-89.
|
6 |
MU L Q,XU S Y,LI Y M,et al.Prototype sodium-ion batteries using an air-stable and Co/Ni-free O-layered metal oxide cathode[J].Advanced Materials,2015,27(43):6928-6933.
|
7 |
张洁,杨占旭.钠离子电池负极材料的研究进展[J].辽宁石油化工大学学报,2016,36(1):7-11.
|
|
ZHANG J,YANG Z X.The progress of sodium-ion battery anode material[J].Journal of Liaoning Shihua University,2016,36(1):7-11.
|
8 |
TARASCON J M.Na-ion versus Li-ion batteries:Complementarity rather than competitiveness[J].Joule,2020,4(8):1616-1620.
|
9 |
ZHAO C L,WANG Q D,YAO Z P,et al.Rational design of layered oxide materials for sodium-ion batteries[J].Science,2020,370(6517):708-711.
|
10 |
游济远,曹永安,孟绍良,等.钠离子电池正极材料研究进展[J].石油化工高等学校学报,2022,35(2):1-8.
|
|
YOU J Y,CAO Y A,MENG S L,et al.Progress in cathode materials for sodium-ion batteries[J].Journal of Petrochemical Universities,2022,35(2):1-8.
|
11 |
XIAO Y,ABBASI N M,ZHU Y F,et al.Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J].Advanced Functional Materials,2020,30(30):2001334.
|
12 |
HWANG J Y,MYUNG S T,SUN Y K.Sodium-ion batteries:Present and future[J].Chemical Society Reviews,2017,46(12):3529-3614.
|
13 |
KIM D,LEE E,SLATER M,et al.Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J].Electrochemistry Communications,2012,18:66-69.
|
14 |
SHEVCHENKO V A,GLAZKOVA I S,NOVICHKOV D A,et al.Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries[J].Chemistry of Materials,2023,35(10):4015-4025.
|
15 |
XIE Y Y,WANG H,XU G L,et al.In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation[J].Advanced Energy Materials,2016,6(24):1601306.
|
16 |
MU L Q,FENG X,KOU R H,et al.Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials[J].Advanced Energy Materials,2018,8(34):1801975.
|
17 |
NISAR U,MURALIDHARAN N,ESSEHLI R,et al.Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J].Energy Storage Materials,2021,38:309-328.
|
18 |
HWANG J Y,OH S M,MYUNG S T,et al.Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries[J].Nature Communications,2015,6:6865.
|
19 |
ZHANG S G,LI X Y,SU Y,et al.Four-in-one strategy to boost the performance of Nax[Ni,Mn]O2[J].Advanced Functional Materials,2023,33(36):2301568.
|
20 |
CHENG Z W,FAN X Y,YU L Z,et al.A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries[J].Angewandte Chemie (International ed.in English),2022,61(19):e202117728.
|
21 |
WU K,RAN P L,WANG S F,et al.Confining bulk molecular O2 by inhibiting charge transfer on surface anions toward stable redox electrochemistry in layered oxide cathodes[J].Nano Energy,2023,113:108602.
|
22 |
YOU Y,XIN S,ASL H Y,et al.Insights into the improved high-voltage performance of Li-incorporated layered oxide cathodes for sodium-ion batteries[J].Chem,2018,4(9):2124-2139.
|
23 |
WANG X Z,ZUO Y T,QIN Y B,et al.Fast Na+ kinetics and suppressed voltage hysteresis enabled by a high-entropy strategy for sodium oxide cathodes[J].Advanced Materials,2024,36(24):e2312300.
|
24 |
ZHAO C L,DING F X,LU Y X,et al.High-entropy layered oxide cathodes for sodium-ion batteries[J].Angewandte Chemie-International Edition,2020,59(1):264-269.
|
25 |
LI F,LIU R B,LIU J,et al.Voltage hysteresis in transition metal oxide cathodes for Li/Na-ion batteries[J].Advanced Functional Materials,2023,33(28):2300602.
|
26 |
YABUUCHI N,KOMABA S.Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries[J].Science and Technology of Advanced Materials,2014,15(4):043501.
|
27 |
YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682.
|
28 |
SILVÁN B,GONZALO E,DJUANDHI L,et al.On the dynamics of transition metal migration and its impact on the performance of layered oxides for sodium-ion batteries:NaFeO2 as a case study[J].Journal of Materials Chemistry A,2018,6(31):15132-15146.
|
29 |
CHIEN Y C,LIU H D,MENON A S,et al.Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method[J].Nature Communications,2023,14(1):2289.
|
30 |
QIAN G N,WANG J Y,LI H,et al.Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques[J].National Science Review,2021,9(2):nwab146.
|