1 |
Li G,Chen Z,Lu J. Lithium⁃sulfur batteries for commercial applications[J].Chem.,2018,4(1):3⁃7.
|
2 |
He J,Bhargav A,Manthiram A. High⁃energy⁃density,long⁃life lithium⁃sulfur batteries with practically necessary parameters enabled by low⁃cost fe⁃ni nanoalloy catalysts[J].ACS Nano,2021,15(5):8583⁃8591.
|
3 |
Kang B,Ceder G. Battery materials for ultrafast charging and discharging[J].Nature,2009,458(7235):190⁃193.
|
4 |
Ellis B L,Nazar L F. Sodium and sodium⁃ion energy storage batteries[J].Current Opinion in Solid State & Materials Science,2012,16(4):168⁃177.
|
5 |
Stevens D A,Dahn J R. High capacity anode materials for rechargeable sodium⁃ion batteries[J].Journal of the Electro⁃chemical Society,2000,147(4):1271⁃1274.
|
6 |
Chen C M. CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J].Journal of the American Society for Information Science and Technology,2006,57(3):359⁃377.
|
7 |
Chen C M. Searching for intellectual turning points:Progressive knowledge domain visualization[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101:5303⁃5310.
|
8 |
Xiao L F,Cao Y L,Henderson W A,et al. Hard carbon nanoparticles as high⁃capacity,high⁃stability anodic materials for Na⁃ion batteries[J].Nano Energy,2016,19:279⁃288.
|
9 |
Ding C F,Huang L B,Lan J L,et al. Superresilient hard carbon nanofabrics for sodium⁃ion batteries[J].Small,2020,16(11):1906883.
|
10 |
Pei Z X,Meng Q Q,Wei L,et al. Toward efficient and high rate sodium⁃ion storage:A new insight from dopant⁃defect interplay in textured carbon anode materials[J].Energy Storage Materials,2020,28:55⁃63.
|
11 |
Lu H Y,Chen X Y,Jia Y L,et al. Engineering Al2O3 atomic layer deposition:Enhanced hard carbon⁃electrolyte interface towards practical sodium ion batteries[J].Nano Energy,2019,64:103903.
|
12 |
Niu Y B,Guo Y J,Yin Y X,et al. High⁃efficiency cathode sodium compensation for sodium⁃ion batteries[J].Advanced Materials,2020,32(33):2001419.
|
13 |
Li X,Zeng X Y,Ren T,et al. The transport properties of sodium⁃ion in the low potential platform region of oatmeal⁃derived hard carbon for sodium⁃ion batteries[J].Journal of Alloys and Compounds,2019,787:229⁃238.
|
14 |
Yoon D,Hwang J,Chang W,et al. Carbon with expanded and well⁃developed graphene planes derived directly from condensed lignin as a high⁃performance anode for sodium⁃ion batteries[J].ACS Applied Materials & Interfaces,2018,10(1):569⁃581.
|
15 |
Kim J B,Lee G H,Lau V W H,et al. Microstructural investigation into na⁃ion storage behaviors of cellulose⁃based hard carbons for na⁃ion batteries[J].Journal of Physical Chemistry C,2021,125(27):14559⁃14566.
|
16 |
Wang J,Lv W J,Ren Q J,et al. High⁃performance hard carbon anode prepared via an ingenious green⁃hydrothermal route[J].Applied Surface Science,2021,558:149824.
|
17 |
Irisarri E,Amini N,Tennison S,et al. Optimization of large scale produced hard carbon performance in Na⁃ion batteries:Effect of precursor,temperature and processing conditions[J].Journal of the Electrochemical Society,2018,165(16):A4058⁃A4066.
|
18 |
Chiang P H,Liu S F,Hung Y H,et al. Coffee⁃ground⁃derived nanoporous carbon anodes for sodium⁃ion batteries with high rate performance and cyclic stability[J].Energy & Fuels,2020,34(6):7666⁃7675.
|
19 |
Lee M E,Kwak H W,Jin H J,et al. Waste beverage coffee⁃induced hard carbon granules for sodium⁃ion batteries[J].ACS Sustainable Chemistry & Engineering,2019,7(15):12734⁃12740.
|
20 |
Rybarczyk M K,Li Y M,Qiao M,et al. Hard carbon derived from rice husk as low cost negative electrodes in Na⁃ion batteries[J].Journal of Energy Chemistry,2019,29:17⁃22.
|
21 |
Sun N,Liu H,Xu B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J].Journal of Materials Chemistry A,2015,3(41):20560⁃20566.
|
22 |
Kumar U,Wu J,Sharma N,et al. Biomass derived high areal and specific capacity hard carbon anodes for sodium⁃ion batteries[J].Energy & Fuels,2021,35(2):1820⁃1830.
|
23 |
Xue Y Y,Guo X,Zhou H F,et al. Influence of beads⁃on⁃string on Na⁃ion storage behavior in electrospun carbon nanofibers[J].Carbon,2019,154:219⁃229.
|
24 |
Zhu Y D,Huang Y,Chen C,et al. Phosphorus⁃doped porous biomass carbon with ultra⁃stable performance in sodium storage and lithium storage[J].Electrochimica Acta,2019,321:134698.
|
25 |
Zeng G,Zhou B L,Yi L C,et al. Green and facile fabrication of hierarchical N⁃doped porous carbon from water hyacinths for high performance lithium/sodium ion batteries[J].Sustainable Energy & Fuels,2018,2(4):855⁃861.
|
26 |
Deng W T,Cao Y J,Yuan G M,et al. Realizing improved sodium⁃ion storage by introducing carbonyl groups and closed micropores into a biomass⁃derived hard carbon anode[J].ACS Applied Materials & Interfaces,2021,13(40):47728⁃47739.
|
27 |
Guo J L,Peng Z. Graphene⁃coated micro/nanostructure hard carbon with improved electrochemical performance for sodium⁃ion battery[J].Applied Physics A⁃Materials Science & Processing,2021,127(7):509.
|
28 |
Mehmood A,Ali G,Koyuturk B,et al. Nanoporous nitrogen doped carbons with enhanced capacity for sodium ion battery anodes[J].Energy Storage Materials,2020,28:101⁃111.
|
29 |
Alvin S,Chandra C,Kim J. Extended plateau capacity of phosphorus⁃doped hard carbon used as an anode in Na⁃ and K⁃ion batteries[J].Chemical Engineering Journal,2020,391:123576.
|
30 |
Jin Q Z,Wang K L,Feng P Y,et al. Surface⁃dominated storage of heteroatoms⁃doping hard carbon for sodium⁃ion batteries[J].Energy Storage Materials,2020,27:43⁃50.
|
31 |
Kumaresan T K,Masilamani S A,Raman K,et al. High performance sodium⁃ion battery anode using biomass derived hard carbon with engineered defective sites[J].Electrochimica Acta,2021,368:137574.
|
32 |
Lu H Y,Ai F X,Jia Y L,et al. Exploring sodium⁃ion storage mechanism in hard carbons with different microstructure prepared by ball⁃milling method[J].Small,2018,14(39):1802694.
|
33 |
Xiao L F,Lu H Y,Fang Y J,et al. Low⁃defect and low⁃porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J].Advanced Energy Materials,2018,8(20):1703238.
|
34 |
Li T,Liu Z Q,Gu Y J,et al. Hierarchically porous hard carbon with graphite nanocrystals for high⁃rate sodium ion batteries with improved initial coulombic efficiency[J].Journal of Alloys and Compounds,2020,817:152703.
|
35 |
Song J H,Yan P F,Luo L L,et al. Yolk⁃shell structured Sb@C anodes for high energy Na⁃ion batteries[J].Nano Energy,2017,40:504⁃511.
|
36 |
Bai P X,Han X P,He Y W,et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries[J].Energy Storage Materials,2020,25:324⁃333.
|
37 |
Soto F A,Yan P F,Engelhard M H,et al. Tuning the solid electrolyte interphase for selective Li⁃ and Na⁃ion storage in hard carbon[J].Advanced Materials,2017,29(18):1606860.
|
38 |
Bai P X,He Y W,Xiong P X,et al. Long cycle life and high rate sodium⁃ion chemistry for hard carbon anodes[J].Energy Storage Materials,2018,13:274⁃282.
|
39 |
Stevens D A,Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electro⁃chemical Society,2001,148(8):A803⁃A811.
|
40 |
Qiu S,Xiao L F,Sushko M L,et al. Manipulating adsorption⁃insertion mechanisms in nanostructured carbon materials for high⁃efficiency sodium ion storage[J].Advanced Energy Materials,2017,7(17):1700403.
|
41 |
Bommier C,Ji X L,Greaney P A. Electrochemical properties and theoretical capacity for sodium storage in hard carbon:Insights from first principles calculations[J].Chemistry of Materials,2019,31(3):658⁃677.
|
42 |
Li Z F,Bommier C,Sen C Z,et al. Mechanism of Na⁃ion storage in hard carbon anodes revealed by heteroatom Doping[J].Advanced Energy Materials,2017,7(18):1602894.
|
43 |
Morikawa Y,Nishimura S,Hashimoto R,et al. Mechanism of sodium storage in hard carbon:An X⁃ray scattering analysis[J].Advanced Energy Materials,2020,10(3):1903176.
|
44 |
Reddy M A,Helen M,Gross A,et al. Insight into sodium insertion and the storage mechanism in hard carbon[J].ACS Energy Letters,2018,3(12):2851⁃2857.
|
45 |
Li Y,Zhang L,Wang X,et al. Sodium⁃storage behavior of electron⁃rich element⁃doped amorphous carbon[J].Applied Physics Reviews,2021,8(1):011402.
|
46 |
Ghimbeu C M,Gorka J,Simone V,et al. Insights on the Na+ ion storage mechanism in hard carbon:Discrimination between the porosity,surface functional groups and defects[J].Nano Energy,2018,44:327⁃335.
|
47 |
Sun N,Guan Z R X,Liu Y W,et al. Extended "adsorption⁃insertion" model:A new insight into the sodium storage mechanism of hard carbons[J].Advanced Energy Materials,2019,9(32):1901351.
|
48 |
Zhu Z Y,Zhong W T,Zhang Y J,et al. Elucidating electrochemical intercalation mechanisms of biomass⁃derived hard carbon in sodium⁃/potassium⁃ion batteries[J].Carbon Energy,2021,3(4):541⁃553.
|
49 |
Alvin S,Cahyadi H S,Hwang J,et al. Revealing the intercalation mechanisms of lithium,sodium,and potassium in hard carbon[J].Advanced Energy Materials,2020,10(20):2000283.
|
50 |
Alvin S,Yoon D,Chandra C,et al. Revealing sodium ion storage mechanism in hard carbon[J].Carbon,2019,145:67⁃81.
|
51 |
Alptekin H,Au H,Jensen A C S,et al. Sodium storage mechanism investigations through structural changes in hard carbons[J].ACS Applied Energy Materials,2020,3(10):9918⁃9927.
|
52 |
Jin Y,Sun S X,Ou M Y,et al. High⁃performance hard carbon anode:Tunable local structures and sodium storage mechanism[J].ACS Applied Energy Materials,2018,1(5):2295⁃2305.
|
53 |
Yu Z E,Lyu Y C,Wang Y T,et al. Hard carbon micro⁃nano tubes derived from kapok fiber as anode materials for sodium⁃ion batteries and the sodium⁃ion storage mechanism[J].Chemical Communications,2020,56(5):778⁃781.
|