石油化工高等学校学报 ›› 2022, Vol. 35 ›› Issue (5): 1-11.DOI: 10.3969/j.issn.1006-396X.2022.05.001
收稿日期:
2022-09-02
修回日期:
2022-09-30
出版日期:
2022-10-25
发布日期:
2022-11-22
通讯作者:
彭祥
作者简介:
许雪容(1995⁃),女,硕士研究生,从事能源与催化方面的研究;E⁃mail:2849513205@qq.com。
基金资助:
Xuerong Xu(), Xiang Peng()
Received:
2022-09-02
Revised:
2022-09-30
Published:
2022-10-25
Online:
2022-11-22
Contact:
Xiang Peng
摘要:
层状双金属氢氧化物(LDHs)具有层内离子可变、层间阴离子可交换以及反应表面较大的特点,因而表现出优异的电催化析氢和析氧性能。此外,基于LDHs的衍生物能够实现催化剂材料的多功能化和性能的增强,使其在众多领域均表现出显著的优势和良好的应用前景。系统分析了LDHs层板结构的可调变性、可剥层及组装性、结构记忆效应等性质,以及剥层法、共沉淀法和水热合成法等LDHs高效电催化剂的常用制备方法,综述了LDHs及其复合衍生物在电解水析氧反应、析氢反应、乙醇电催化氧化反应、氧还原反应等电催化领域的应用研究,并对LDHs所涉及的问题和解决方案进行了分析及展望。
中图分类号:
许雪容, 彭祥. 层状双金属氢氧化物电催化剂的合成与应用研究进展[J]. 石油化工高等学校学报, 2022, 35(5): 1-11.
Xuerong Xu, Xiang Peng. Research Progress in Preparation and Application of Layered Double Hydroxides Electrocatalysts[J]. Journal of Petrochemical Universities, 2022, 35(5): 1-11.
图8 具有核壳结构的NiCo2O4@FeNi?LDHs双功能型电催化剂示意图和锌空气电池配置示意图
Fig.8 Schematic diagram of NiCo2O4@FeNi?LDHs with core?shell structure as a bifunctional electrocatalyst and zinc?air battery configuration
1 | 邹才能,李建明,张茜,等.氢能工业现状、技术进展、挑战及前景[J].天然气工业,2022,42(4):1⁃20. |
Zou C N,Li J M,Zhang X,et al.Industrial status,technological progress,challenges and prospects of hydrogen energy[J].Natural Gas Industry,2022,42(4):1⁃20. | |
2 | Peng X,Pi C,Zhang X,et al.Recent progress of transition metal nitrides for efficient electrocatalytic water splitting[J].Sustain. Energ. Fuels,2019,3:366⁃381. |
3 | Peng X,Jin X,Gao B,et al.Strategies to improve cobalt⁃based electrocatalysts for electrochemical water splitting[J].J.Catal.,2021,398:54⁃66. |
4 | Peng X,Yan Y,Jin X,et al.Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting[J].Nano Energy,2020,78:105234. |
5 | 刘淖泽,熊时健,彭祥.钒酸钴纳米片的析氧性能研究[J].稀有金属,2022,315(6):839⁃845. |
Liu N Z,Xiong S J,Peng X.Oxygen evolution reaction property of cobalt vanadate nanosheets[J].Chinese Journal of Rare Metals,2022,315(6):839⁃845. | |
6 | 杨洋.NiFe LDH的合成及电催化析氧性能的研究[D].重庆:重庆大学,2020. |
7 | Xiang Q,Li F,Chen W L,et al.In situ vertical growth of Fe⁃Ni layered double⁃hydroxide arrays on Fe⁃Ni alloy foil:Interfacial layer enhanced electrocatalyst with small overpotential for oxygen evolution reaction[J].ACS Energy Lett.,2018,3(10):2357⁃2365. |
8 | 刘倩倩.层状双金属氢氧化物及其衍生物电催化剂的制备与性能研究[D].西安:陕西科技大学,2021. |
9 | 唐林.基于镍、铁的磷化物/氢氧化物复合电催化剂用于分解水析氧反应研究[D].济南:山东师范大学,2021. |
10 | 颜丽红.新型层状双金属氢氧化物吸附剂的制备及其电催化氧化潜能研究[D].福州:福建工程学院,2019. |
11 | Goh K H,Lim T T,Dong Z.Application of layered double hydroxides for removal of oxyanions:A review[J].Water Res.,2008,42(6⁃7):1343⁃1368. |
12 | Liao L,Zhao N,Xia Z.Hydrothermal synthesis of Mg⁃Al layered double hydroxides(LDHs) from natural brucite and Al(OH)3[J].Mater. Res. Bull.,2012,47(11):3897⁃3901. |
13 | Li T,Miras H N,Song Y F.Polyoxometalate (POM)⁃layered double hydroxides (LDH) composite materials:Design and catalytic applications[J].Catalysts,2017,7(9):260. |
14 | Li C,Wei M,Evans D G,et al.Recent advances for layered double hydroxides (LDHs) materials as catalysts applied in green aqueous media[J].Catal. Today,2015,247:163⁃169. |
15 | Yu J,Wang Q,O'Hare D,et al.Preparation of two dimensional layered double hydroxide nanosheets and their applications[J].Chem. Soc. Rev.,2017,46(19):5950⁃5974. |
16 | Fan G L,Li F,Evans D G,et al.Catalytic applications of layered double hydroxides:Recent advances and perspectives[J].Chem. Soc. Rev.,2014,43(20):7040⁃7066. |
17 | Lv L,Yang Z,Chen K,et al.2D layered double hydroxides for oxygen evolution reaction:From fundamental design to application[J].Adv. Energy Mater.,2019,9(17):1803358. |
18 | Liu P F,Zhang L,Zheng L R,et al.Surface engineering of nickel selenide for an enhanced intrinsic overall water splitting ability[J].Mater. Chem. Front.,2018,2(9):1725⁃1731. |
19 | Benhiti R,Ait Ichou A,Zaghloul A,et al.Synthesis,characterization,and comparative study of MgAl⁃LDHs prepared by standard coprecipitation and urea hydrolysis methods for phosphate removal[J].Environ. Sci. Pollut. R.,2020,27(36):45767⁃45774. |
20 | Luo M,Cai Z,Wang C,et al.Phosphorus oxoanion⁃intercalated layered double hydroxides for high⁃performance oxygen evolution[J].Nano Res.,2017,10(5):1732⁃1739. |
21 | Hunter B M,Hieringer W,Winkler J R,et al.Effect of interlayer anions on [NiFe]⁃LDH nanosheet water oxidation activity[J].Energy Environ. Sci.,2016,9(5):1734⁃1743. |
22 | 王燕勇.层状双金属氢氧化物及其衍生物电催化性能的研究[D].长沙:湖南大学,2018. |
23 | Dong Y,Komarneni S,Zhang F,et al.“Structural instability” induced high⁃performance NiFe layered double hydroxides as oxygen evolution reaction catalysts for pH⁃near⁃neutral borate electrolyte:The role of intercalates[J].Appl. Catal. B⁃Environ.,2020,263:118343. |
24 | Li M,Farmen L M,Chan C K.Selenium removal from sulfate⁃containing groundwater using granular layered double hydroxide materials[J].Ind. Eng. Chem. Res.,2017,56(9):2458–2465. |
25 | 杨淑倩,刘玉娟,刘进博,等.焙烧温度对甲醇水蒸气重整制氢Ce/Cu/Zn⁃Al水滑石衍生催化剂的影响[J].燃料化学学报,2018,46(12):1482⁃1490. |
Yang S Q,Liu Y J,Liu J B,et al.Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn⁃Al catalysts for hydrogen production via methanol steam reforming[J].Journal of Fuel Chemistry and Technology,2018,46(12):1482⁃1490. | |
26 | Kameda T,Uchiyama N,Yoshioka T.Treatment of gaseous hydrogen chloride using Mg⁃Al layered double hydroxide intercalated with carbonate ion[J].Chemosphere,2010,81(5):658⁃662. |
27 | Li F,Liu J,Evans D G,et al.Stoichiometric synthesis of pure MFe2O4 (M= Mg,Co,and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite⁃like) precursors[J].Chem. Mater.,2004,16(8):1597⁃1602. |
28 | Chakrapani K,Özcan F,Ortega K F,et al.Composition⁃dependent effect of the calcination of cobalt⁃,nickel⁃,and gallium⁃based layered double hydroxides to mixed metal oxides in the oxygen evolution reaction[J].Chem. Electro. Chem.,2018,5(1):93⁃100. |
29 | Zhao D,Wang C,Yu F,et al.Enhanced oxygen vacancies in a two⁃dimensional MnAl⁃layered double oxide prepared via flash nanoprecipitation offers high selective catalytic reduction of NOx with NH3[J].Nanomaterials,2018,8(8):620. |
30 | Yuan Z J,Bak S M,Li P S,et al.Activating layered double hydroxide with multivacancies by memory effect for energy⁃efficient hydrogen production at neutral pH[J].ACS Energy Lett.,2019,4(6):1412⁃1418. |
31 | Liu Z,Ma R,Osada M,et al.Synthesis,anion exchange,and delamination of Co⁃Al layered double hydroxide:Assembly of the exfoliated nanosheet/polyanion composite films and magneto⁃optical studies[J].J. Am. Chem. Soc.,2006,128(14):4872⁃4880. |
32 | Wang Y,Zhang Y,Liu Z,et al.Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J].Angew. Chem. Int. Ed.,2017,56(21):5867⁃5871. |
33 | Guo X,Xu S,Zhao L,et al.One⁃step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties[J].Langmuir,2009,25(17):9894⁃9897. |
34 | Guo X,Zhang F,Evans D G,et al.Layered double hydroxide films:Synthesis,properties and applications[J].Chem. Commun.,2010,46(29):5197⁃5210. |
35 | Zhang C,Zhao J,Zhou L,et al.Layer⁃by⁃layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water[J].J. Mater. Chem. A,2016,4(29):11516⁃11523. |
36 | Guo X,Zheng X,Hu X,et al.Electrostatic adsorbing graphene quantum dot into nickel⁃based layered double hydroxides:Electron absorption/donor effects enhanced oxygen electrocatalytic activity[J].Nano Energy,2021,84:105932. |
37 | Venugopal B R,Shivakumara C,Rajamathi M.Effect of various factors influencing the delamination behavior of surfactant intercalated layered double hydroxides[J].J. Colloid Interf. Sci.,2006,294(1):234⁃239. |
38 | Han N,Zhao F,Li Y.Ultrathin nickel⁃iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation[J].J. Mater. Chem. A,2015,3(31):16348⁃16353. |
39 | Liu Z,Ma R,Osada M,et al.Synthesis,anion exchange,and delamination of Co⁃Al layered double hydroxide:Assembly of the exfoliated nanosheet/polyanion composite films and magneto⁃optical studies[J].J. Am. Chem. Soc.,2006,128(14):4872⁃4880. |
40 | Song F,Hu X.Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J].Nat. Commun.,2014,5(1):4477. |
41 | Qiao C,Zhang Y,Zhu Y,et al.One⁃step synthesis of zinc⁃cobalt layered double hydroxide(Zn⁃Co⁃LDH) nanosheets for high⁃efficiency oxygen evolution reaction[J].J. Mater. Chem. A,2015,3(13):6878⁃6883. |
42 | 黄任枢,姚金环,梁晓丽,等.均相沉淀法制备Ni/Al⁃LDHs/rGO复合电极材料的电化学性能[J].辽宁石油化工大学学报,2020,40(4):80⁃86. |
Huang R S,Yao J H,Liang X L,et al.Electrochemical performances of Ni/Al⁃LDHs/rGO composites prepared by homogeneous precipitation method[J].Journal of Liaoning Shihua University,2020,40(4):80⁃86. | |
43 | Wang Z,Liu W,Hu Y,et al.An Fe⁃doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation[J].Inorg. Chem. Front.,2019,6(7):1890⁃1896. |
44 | 汪凯军.核壳结构层状双金属氢氧化物复合材料的制备及其催化性能研究[D].南京:南京师范大学,2021. |
45 | Li C,Zhang Z,Liu R.In situ growth of 3D NiFe LDH⁃POM micro⁃flowers on nickel foam for overall water splitting[J].Small,2020,16(46):2003777. |
46 | Wu L,Yu L,Zhang F,et al.Facile synthesis of nanoparticle⁃stacked tungsten⁃doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction[J].J. Mater. Chem. A,2020,8(16):8096⁃8103. |
47 | Zhao Y,He S,Wei M,et al.Hierarchical films of layered double hydroxides by using a sol⁃gel process and their high adaptability in water treatment[J].Chem. Commun.,2010,46(17):3031⁃3033. |
48 | 赵东启,顾贵洲,李政.水滑石类光催化剂在污水处理中的应用[J].石油化工高等学校学报,2022,35(3):36⁃42. |
Zhao D Q,Gu G Z,Li Z.Application of LDHs with photocatalytic properties in water pollution treatment[J].Journal of Petrochemical Universities,2022,35(3):36⁃42. | |
49 | Chen H,Ai Y,Liu F,et al.Carbon⁃coated hierarchical Ni⁃Mn layered double hydroxide nanoarrays on Ni foam for flexible high⁃capacitance supercapacitors[J].Electrochim. Acta,2016,213:55⁃65. |
50 | Gong M,Dai H.A mini review of NiFe⁃based materials as highly active oxygen evolution reaction electrocatalysts[J].Nano Res.,2015,8(1):23⁃39. |
51 | Xie Q,Cai Z,Li P,et al.Layered double hydroxides with atomic⁃scale defects for superior electrocatalysis[J].Nano Res.,2018,11(9):4524⁃4534. |
52 | Feng J X,Ye S H,Xu H,et al.Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction[J].Adv. Mater.,2016,28(23):4698⁃4703. |
53 | Fan K,Chen H,Ji Y,et al.Nickel⁃vanadium monolayer double hydroxide for efficient electrochemical water oxidation[J].Nat. Commun.,2016,7(1):11981. |
54 | Zhang J,Liu J,Xi L,et al.Single⁃atom Au/NiFe layered double hydroxide electrocatalyst:Probing the origin of activity for oxygen evolution reaction[J].J. Am. Chem. Soc.,2018,140(11):3876⁃3879. |
55 | 曾丽丽.双金属氢氧化物/氧化物电解水催化剂的制备及其催化性能研究[D].广州:华南理工大学,2020. |
56 | Chia X,Eng A Y S,Ambrosi A,et al.Electrochemistry of nanostructured layered transition⁃metal dichalcogenides[J].Chem.Rev.,2015,115(21):11941⁃11966. |
57 | Baranton S,Coutanceau C.Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction[J].Appl. Catal. B⁃Environ.,2013,136:1⁃8. |
58 | Bai J,Sun Q,Wang Z,et al.Electrodeposition of cobalt nickel hydroxide composite as a high⁃efficiency catalyst for hydrogen evolution reactions[J].J.Electrochem. Soc.,2017,164(9):587⁃592. |
59 | Han S,Pu Y C,Zheng L,et al.Uniform carbon⁃coated CdS core⁃shell nanostructures:Synthesis,ultrafast charge carrier dynamics,and photoelectrochemical water splitting[J].J. Mater. Chem.A,2016,4(3):1078⁃1086. |
60 | Hu J,Zhang C,Jiang L,et al.Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media[J].Joule,2017,1(2):383⁃393. |
61 | Liu Q,Wang E,Sun G.Layered transition⁃metal hydroxides for alkaline hydrogen evolution reaction[J].Chin. J. Catal.,2020,41(4):574⁃591. |
62 | Li W,Zhang S,Fan Q,et al.Hierarchically scaffolded CoP/CoP2 nanoparticles:Controllable synthesis and their application as a well⁃matched bifunctional electrocatalyst for overall water splitting[J].Nanoscale,2017,9(17):5677⁃5685. |
63 | Jia X,Zhao Y,Chen G,et al.Ni3FeN nanoparticles derived from ultrathin NiFe⁃layered double hydroxide nanosheets:An efficient overall water splitting electrocatalyst[J].Adv. Energy Mater.,2016,6(10):1502585. |
64 | Li Z,Jang H,Qin D,et al.Alloy⁃strain⁃output induced lattice dislocation in Ni3FeN/Ni3Fe ultrathin nanosheets for highly efficient overall water splitting[J].J. Mater. Chem. A,2021,9(7):4036⁃4043. |
65 | Hu J,Zhu S,Liang Y,et al.Self⁃supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting[J].J. Colloid Interf. Sci.,2021,587:79⁃89. |
66 | He D,Cao L,Huang J,et al.In⁃situ optimizing the valence configuration of vanadium sites in NiV⁃LDH nanosheet arrays for enhanced hydrogen evolution reaction[J].J. Energy Chem.,2020,47:263⁃271. |
67 | Shao M,Ning F,Zhao J,et al.Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation[J].Adv. Funct. Mater.,2013,23(28):3513⁃3518. |
68 | 徐亮.层状双金属氢氧化物及其复合物的可控制备用于小分子电催化性能研究[D].北京:北京化工大学,2019. |
69 | Gao Y,Zhao Z,Jia H,et al.Partially reduced Ni2+,Fe3+⁃layered double hydroxide for ethanol electrocatalysis[J].J.Mater.Sci.,2019,54(23):14515⁃14523. |
70 | Zhou L,Xie X,Xie R,et al.Facile synthesis of AuPd nanowires anchored on the hybrid of layered double hydroxide and carbon black for enhancing catalytic performance towards ethanol electro⁃oxidation[J].Int. J. Hydrogen Energ.,2019,44(47):25589⁃25598. |
71 | Yang X,Gao Y,Zhao Z,et al.Three⁃dimensional spherical composite of layered double hydroxides/carbon nanotube for ethanol electrocatalysis[J].Appl. Clay Sci.,2021,202:105964. |
72 | Yang H,Guo T,Qin K,et al.Different interlayer anions controlled zinc cobalt layered double hydroxide nanosheets for ethanol electrocatalytic oxidation[J].J. Phys. Chem. C,2021,125(45):24867⁃24875. |
73 | Wang D,Chen X,Evans D G,et al.Well⁃dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J].Nanoscale,2013,5(12):5312⁃5315. |
74 | Li Z,Shao M,Yang Q,et al.Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly⁃efficient bifunctional oxygen electrocatalysis[J].Nano Energy,2017,37:98⁃107. |
75 | Zhang S,Zhang Y,Jiang W,et al.Co@N⁃CNTs derived from triple⁃role CoAl⁃layered double hydroxide as an efficient catalyst for oxygen reduction reaction[J].Carbon,2016,107:162⁃170. |
76 | Wang J,Li L,Chen X,et al.A Co⁃N/C hollow⁃sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction,and its active sites in various pH media[J].Nano Res.,2017,10(7):2508⁃2518. |
77 | Zhou L,Deng B,Jiang Z,et al.Shell thickness controlled core⁃shell Fe3O4@CoO nanocrystals as efficient bifunctional catalysts for the oxygen reduction and evolution reactions[J].Chem. Commun.,2019,55(4):525⁃528. |
78 | Sönmez T,Thompson S J,Price S W T,et al.Voltammetric studies of the mechanism of the oxygen reduction in alkaline media at the spinels Co3O4 and NiCo2O4[J].J. Electrochem. Soc.,2016,163(10):884⁃890. |
79 | Aijaz A,Masa J,Rösler C,et al.Co@Co3O4 encapsulated in carbon nanotube⁃grafted nitrogen⁃doped carbon polyhedra as an advanced bifunctional oxygen electrode[J].Angew. Chem. Int. Ed.,2016,55(12):4087⁃4091. |
80 | Guo X,Hu X,Wu D,et al.Tuning the bifunctional oxygen electrocatalytic properties of core⁃shell Co3O4@ NiFe LDH catalysts for Zn⁃air batteries:Affects of interfacial cation valences[J].ACS Appl. Mater. Interfaces,2019,11(24):21506⁃21514. |
81 | Wan L,Zhao Z,Chen X,et al.Controlled synthesis of bifunctional NiCo2O4@FeNi LDH core⁃shell nanoarray air electrodes for rechargeable zinc⁃air batteries[J].ACS Sustain. Chem. Eng.,2020,8(30):11079⁃11087. |
82 | Chala S A,Tsai M C,Su W N,et al.Hierarchical 3D architectured Ag nanowires shelled with NiMn⁃layered double hydroxide as an efficient bifunctional oxygen electrocatalyst[J].ACS Nano,2020,14(2):1770⁃1782. |
[1] | 王嘉曼, 熊靖, 师金鸽, 韦岳长, 霍开玲. TiO2催化剂催化CO2还原的研究进展[J]. 石油化工高等学校学报, 2024, 37(4): 1-11. |
[2] | 韩飞飞, 焦建豪, 田祥臣, 杨野, 秦玉才, 宋丽娟. Sn引入方式对Al2O3负载Pt基催化剂丙烷脱氢性能的影响[J]. 石油化工高等学校学报, 2024, 37(4): 49-56. |
[3] | 李乐乐, 申丽莎, 涂志明, 卢卓信, 谭弘毅, 杨轶, 闫常峰. Cu掺杂WN松枝状自支撑纳米阵列的制备及其碱性析氢性能的研究[J]. 石油化工高等学校学报, 2024, 37(4): 57-65. |
[4] | 唐伟建, 王钰佳, 孙娜, 王海彦. 基于不同路线合成环己基苯的催化剂研究进展[J]. 石油化工高等学校学报, 2024, 37(3): 17-24. |
[5] | 毕艳琴, 陈亮亮, 段春阳, 赵增华. Ce-CoFe-P@CC纳米复合催化体系的OER性能[J]. 石油化工高等学校学报, 2024, 37(3): 49-57. |
[6] | 王焕, 熊晓云, 郑云锋, 孙祥博, 关慧敏, 李强, 宋丽娟. FCC催化剂传质性能与孔结构和酸性的关联性探究[J]. 石油化工高等学校学报, 2024, 37(3): 58-65. |
[7] | 刘世佳, 何凯, 毕研峰, 宋丽娟. γ⁃Al2O3载体的形貌调控及其对丙烷脱氢催化剂的影响综述[J]. 石油化工高等学校学报, 2024, 37(2): 31-41. |
[8] | 李声笛, 肖海成, 吴志杰. 费托合成Co基催化剂的研究进展[J]. 石油化工高等学校学报, 2024, 37(1): 34-42. |
[9] | 杜坤, 郭佳欣, 马紫昂, 毛晶, 凌涛, 赵巍. 中性环境下电催化析氧反应研究进展[J]. 石油化工高等学校学报, 2023, 36(5): 1-14. |
[10] | 黄旭君, 宋永一, 于洋, 丁巍, 张舒冬, 蔡海乐, 马锐. 石油焦应用及脱硫技术进展[J]. 石油化工高等学校学报, 2023, 36(5): 15-23. |
[11] | 张景威, 惠宇, 杨野, 李强, 秦玉才, 宋丽娟, 李晟闻. B⁃MFI分子筛可控合成及丁烯双键异构化应用[J]. 石油化工高等学校学报, 2023, 36(5): 31-37. |
[12] | 陈晓雨, 王春蓉, 孙京, 王景芸, 陈阳, 周明东. 不同形貌CeO2催化CO2合成环状碳酸酯的研究[J]. 石油化工高等学校学报, 2023, 36(5): 38-44. |
[13] | 陈基鹏, 杨阳佳子, 李鹏, 张健, 胡绍争. 石墨相氮化碳的制备、改性及应用[J]. 石油化工高等学校学报, 2023, 36(5): 45-51. |
[14] | 刘嘉敏, 越婷婷, 常迎, 郭少红, 贾晶春, 贾美林. CO2RR稀土基催化剂的研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 1-12. |
[15] | 宋学实, 曲微丽, 赵磊, 王振波. 质子交换膜燃料电池氧还原Pt基催化剂研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 25-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
网站版权 © 2021《石油化工高等学校学报》编辑部
地址:辽宁省抚顺市望花区丹东路西段1号 电话:024-56860967 E-mail:lnxuebao@126.com 邮编:113001
本系统由北京玛格泰克科技发展有限公司设计开发