1 |
Rondinelli J M, May S J,Freeland J W,et al.Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery[J].MRS Bulletin, 2012, 37(3): 261⁃70.
|
2 |
Yang X, Li C, Wang J, et al. Graphene dispersed Bi2WO6 nanosheets with promoted interfacial charge separation for visible light photocatalysis[J]. Chem.Cat.Chem., 2019, 11(22): 5487⁃5494.
|
3 |
Biswas A, Saha S, Pal S, et al. TiO2⁃templated BaTiO3 nanorod as a piezocatalyst for generating wireless cellular stress [J]. ACS Appl. Mater. Interfaces, 2020, 12(43): 48363⁃48370.
|
4 |
Chen C F, King G, Dickerson R M, et al. Oxygen⁃deficient BaTiO3⁃perovskite as an efficient bifunctional oxygen electrocatalyst[J].Nano Energy, 2015, 13: 423⁃432.
|
5 |
Yang K, Li X, Yu C, et al. Review on heterophase/homophase junctions for efficient photocatalysis: The case of phase transition construction[J]. Chinese Journal of Catalysis, 2019, 40(6): 796⁃818.
|
6 |
Fu J, Hou Y, Zheng M, et al. Topochemical conversion of (111) BaTiO3 piezoelectric microplatelets using Ba6Ti17O40 as the precursor [J]. Crystal Growth & Design, 2018, 19(2): 1198⁃1205.
|
7 |
Lee H, Kim T, Patzner J J, et al. Imprint control of BaTiO3 thin films via chemically induced surface polarization pinning [J]. Nano Lett, 2016, 16(4): 2400⁃2406.
|
8 |
Zhang J, Wu W, Yan S, et al. Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature[J]. Applied Surface Science, 2015, 344: 249⁃256.
|
9 |
Feng Q, Hirasawa M, Yanagisawa K. Synthesis of crystal⁃axis⁃oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process[J]. Chemistry of Materials, 2001, 13(2): 290⁃296.
|
10 |
Biswas A, Saha S, Pal S, et al. TiO2⁃templated BaTiO3 nanorod as a piezocatalyst for generating wireless cellular stress[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48363⁃48370.
|
11 |
Wei H, McMaster W A, Tan J Z Y, et al. Mesoporous TiO2/g⁃C3N4 microspheres with enhanced visible⁃light photocatalytic activity[J]. The Journal of Physical Chemistry C, 2017, 121(40): 22114⁃22122.
|
12 |
Zhou Y, Shin D, Ngaboyamahina E, et al. Efficient and stable Pt/TiO2/CdS/Cu2BaSn (S, Se)4 photocathode for water electrolysis applications[J]. ACS Energy Letters, 2017, 3(1): 177⁃183.
|
13 |
Xu F, Meng K, Cheng B, et al. Unique S⁃scheme heterojunctions in self⁃assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nature communications, 2020, 11(1): 1⁃9.
|
14 |
刘纪法, 陈雪冰, 王芳芳, 等. 六方相/单斜相 WO3 “异相结” 的可控合成及光催化性能[J]. 石油化工高等学校学报, 2021, 34(6): 22⁃26.
|
|
Liu J F, Chen X B, Wang F F, et al. Controllable synthesis and photocatalytic properties of hexagonal/monoclinic WO3 phase junction[J].Journal of Petrochemical Universities,2021,34(6):22⁃26.
|
15 |
Han X, Wang X, Xie S, et al. Carbonate ions⁃assisted syntheses of anatase TiO2 nanoparticles exposed with high energy (001) facets[J].RSC Advances, 2012, 2(8):3251⁃3253.
|
16 |
Jinbo P, Sheng S, Wei Z, et al. Recent progress in photocatalytic hydrogen evolution[J]. Acta Physico⁃Chimica Sinica, 2020, 36(3): 1905068⁃1905070.
|
17 |
Wang E, Yin K, Zhao X,et al. Coherent TiO2/BaTiO3 heterostructure as a functional reservoir and promoter for polysulfide intermediates [J]. Chem.Commun.(Camb), 2018, 54(86): 12250⁃12253.
|
18 |
Zhu H, Cai S, Liao G, et al. Recent advances in photocatalysis based on bioinspired superwettabilities[J]. ACS Catalysis, 2021, 11(24): 14751⁃14771.
|
19 |
Yang W, Feng S, Zhang X, et al. Bodipy⁃containing porous microcapsules for flow heterogeneous photocatalysis[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38722⁃38731.
|
20 |
王鑫,张静. CdS异相结的固相法制备及其光催化性能[J].辽宁石油化工大学学报,2019, 39(3): 30⁃34.
|
|
Wang X, Zhang J. Preparation of CdS phase junction by solid phase method and photocatalytic performance[J].Journal of Liaoning Shihua University,2019,39(3):30⁃34.
|