| 1 | 
																						 
											 Shirakawa H, Louis E, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x[J]. Journal of the Chemical Society, Chemical Communications, 1977, 16: 578⁃580.
											 											 | 
										
																													
																						| 2 | 
																						 
											 Vernitskaya T V, Efimov O N. Polypyrrole:A conducting polymer:Its synthesis, properties and applications[J]. Russian Chemical Reviews, 1997, 66(5): 443⁃457.
											 											 | 
										
																													
																						| 3 | 
																						 
											 Sadki S, Schottland P, Brodie N, et al. The mechanisms of pyrrole electropolymerization[J]. Chemical Society Reviews, 2000, 29(5): 283⁃293.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Dubal D P, Lee S H, Kim J G, et al. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor[J]. Journal of Materials Chemistry, 2012, 22: 3044⁃3052.
											 											 | 
										
																													
																						| 5 | 
																						 
											 Khamlich S, Barzegar F, Nuru Z Y, et al. Polypyrrole/graphene nanocomposite: High conductivity and low percolation threshold[J]. Synthetic Metals, 2014, 198: 101⁃106.
											 											 | 
										
																													
																						| 6 | 
																						 
											 Dhanabalan A,Mello S V,Oliveira O N.Preparation of Langmuir⁃Blodgett films of soluble polypyrrole[J].Macromolecules,1998,31(6):1827⁃1832.
											 											 | 
										
																													
																						| 7 | 
																						 
											 马慧荣, 李梅, 徐清钢, 等. 导电聚吡咯的研究进展[J]. 山东轻工业学院学报, 2011, 25(1): 14⁃18.
											 											 | 
										
																													
																						 | 
																						 
											 Ma H R, Li M, Xu Q G, et al. Research progress in conductive polypyrrole[J]. Journal of Shandong Polytechnic University, 2011, 25(1): 14⁃18.
											 											 | 
										
																													
																						| 8 | 
																						 
											 李廷希, 宋慧, 张成祥, 等. 聚吡咯及其复合材料的研究进展[J]. 化学推进剂与高分子材料, 2016, 14(3): 19⁃24.
											 											 | 
										
																													
																						 | 
																						 
											 Li T X, Song H, Zhang C X, et al. Research progress of polypyrrole and its composite materials[J]. Chemical Propellants & Polymeric Materials, 2016, 14(3): 19⁃24.
											 											 | 
										
																													
																						| 9 | 
																						 
											 郭宁. 功能化聚吡咯纳米复合材料的应用研究进展[J]. 合成技术及应用, 2019, 34(3): 28⁃34.
											 											 | 
										
																													
																						 | 
																						 
											 Guo N. Progress in the application of functionalized polypyrrole nanocomposites[J]. Synthetic Technology and Application, 2019, 34(3): 28⁃34.
											 											 | 
										
																													
																						| 10 | 
																						 
											 张苗苗, 刘旭燕, 钱炜. 聚吡咯电极材料在超级电容器中的研究进展[J].材料导报, 2018, 32(3): 378⁃383.
											 											 | 
										
																													
																						 | 
																						 
											 Zhang M M, Liu X Y, Qian W. Research development of polypyrrole electrode materials in supercapacitors[J]. Materials Reports, 2018, 32(3): 378⁃383.
											 											 | 
										
																													
																						| 11 | 
																						 
											 Feng X M,Huang H P,Ye Q Q, et al.Ag/polypyrrole core⁃shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(24): 8463–8468.
											 											 | 
										
																													
																						| 12 | 
																						 
											 Shahnavaz Z, Lorestani F, Alias Y, et al. Polypyrrole⁃ZnFe2O4 magnetic nano⁃composite with core⁃shell structure for glucose sensing[J]. Applied Surface Science, 2014, 317: 622⁃629.
											 											 | 
										
																													
																						| 13 | 
																						 
											 李洪萍, 孙常青, 王利魁, 等. 聚苯乙烯/聚吡咯Yolk⁃Shell结构微粒的制备[J]. 化工新型材料, 2017, 45(12): 83⁃88.
											 											 | 
										
																													
																						 | 
																						 
											 Li H P, Sun C Q, Wang L K, et al. Preparation of polystyrene/polypyrrole Yolk⁃Shell microparticles[J]. 2017, 45(12): 83⁃88.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Magdesieva T V, Nikitin O M, Levitsky O A, et al. Polypyrrole⁃palladium nanoparticles composite as efficient catalyst for Suzuki⁃Miyaura coupling[J]. Journal of Molecular Catalysis A: Chemical, 2012, 353⁃354: 50⁃57.
											 											 | 
										
																													
																						| 15 | 
																						 
											 Choudhary M, Islam R U, Witcomb M J, et al. In situ generation of a high⁃performance Pd⁃polypyrrole composite with multi⁃functional catalytic properties[J]. Dalton Transactions, 2014, 43(17): 6396⁃6405.
											 											 | 
										
																													
																						| 16 | 
																						 
											 吴雪, 沈俊海, 陈海峰, 等.聚吡咯/碳纳米管复合物的制备及电性能研究[J].原子与分子物理学报, 2014, 31(6): 1000⁃1008.
											 											 | 
										
																													
																						 | 
																						 
											 Wu X, Shen J H, Chen H F, et al. The preparation and electrical properties of polypyrrole/carbon nanotubes composites[J]. 2014, 31(6): 1000⁃1008.
											 											 | 
										
																													
																						| 17 | 
																						 
											 Wang J, Cai K F, Shen S, et al. Preparation and thermoelectric properties of multi⁃walled carbon nanotubes/polypyrrole composites[J]. Synthetic Metals, 2014, 195: 132⁃136.
											 											 | 
										
																													
																						| 18 | 
																						 
											 Song H J, Cai K F, Wang J, et al. Influence of polymerization method on the thermoelectric properties of multi walled carbon nanotubes/polypyrrole composites[J]. Synthetic Metals, 2016, 211: 58⁃65.
											 											 | 
										
																													
																						| 19 | 
																						 
											 Li J,Wu Z,Duan Q Y,et al.Decoration of ZIF⁃8 on polypyrrole nanotubes for highly efficient and selective capture of U(VI)[J].Journal of Cleaner Production,2018,204:896⁃905.
											 											 | 
										
																													
																						| 20 | 
																						 
											 Wang Y H, Yang J, Wang L Y, et al. Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 20124⁃20131.
											 											 | 
										
																													
																						| 21 | 
																						 
											 Zhang D C, Zhang X, Chen Y, et al. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors[J]. Journal of Power Sources, 2011, 196(14): 5990⁃5996.
											 											 | 
										
																													
																						| 22 | 
																						 
											 Fan X, Yang Z W, He N. Hierarchical nanostructured polypyrrole/graphene composites as supercapacitor electrode[J]. RSC Advances, 2015, 5(20): 15096⁃15102.
											 											 | 
										
																													
																						| 23 | 
																						 
											 Zhu M, Hao Y, Ma X, et al. Construction of a graphene/polypyrrole composite electrode as an electrochemically controlled release system[J]. RSC Advances, 2019, 9(22): 12667⁃12674.
											 											 | 
										
																													
																						| 24 | 
																						 
											 Liu Y Z, Xu N, Chen W C, et al. Supercapacitor with high cycling stability through electrochemical deposition of metal⁃organic frameworks/polypyrrole positive electrode[J]. Dalton Transactions, 2018, 47(38): 13472⁃13478.
											 											 | 
										
																													
																						| 25 | 
																						 
											 Ma K X, Sinha A, Dang X M, et al. Electrochemical preparation of gold nanoparticles⁃polypyrrole Co⁃decorated 2D MoS2 nanocomposite sensor for sensitive detection of glucose[J]. Journal of the Electrochemical Society, 2019, 166(2): 147⁃154.
											 											 | 
										
																													
																						| 26 | 
																						 
											 Jian X, He M, Chen L, et al. Three⁃dimensional carambola⁃like MXene/polypyrrole composite produced by one⁃step co⁃electrodeposition method for electrochemical energy storage[J]. Electrochimica Acta, 2019, 318: 820⁃827.
											 											 | 
										
																													
																						| 27 | 
																						 
											 余丽丽, 朱俊杰, 赵景泰. 超级电容器的现状及发展趋势[J]. 自然杂志, 2015, 37(3): 188⁃196.
											 											 | 
										
																													
																						 | 
																						 
											 Yu L L, Zhu J J, Zhao J T. The present situation and development trend of supercapacitors[J]. Chinese Journal of Nature, 2015, 37(3): 188⁃196.
											 											 | 
										
																													
																						| 28 | 
																						 
											 Wang F, Xiao S Y, Hou Y Y, et al. Electrode materials for aqueous asymmetric supercapacitors[J]. RSC Advances, 2013, 3(32): 13059⁃13084.
											 											 | 
										
																													
																						| 29 | 
																						 
											 Xu R Q, Guo F M, Cui X, et al. High performance carbon nanotube based fiber⁃shaped supercapacitors using redox additives of polypyrrole and hydroquinone[J]. Journal of Materials Chemistry A, 2015, 3(44): 22353⁃22360.
											 											 | 
										
																													
																						| 30 | 
																						 
											 Zhu M, Huang Y, Deng Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene[J]. Advanced Energy Materials, 2016, 6(21): 1600969.
											 											 | 
										
																													
																						| 31 | 
																						 
											 Zhou C, Zhang Y W, Li Y Y, et al. Construction of high⁃capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters, 2013, 13(5): 2078⁃2085.
											 											 | 
										
																													
																						| 32 | 
																						 
											 Shivakumarab S, Munichandraiah N. In⁃situ preparation of nanostructured α⁃MnO2/polypyrrole hybrid composite electrode materials for high performance supercapacitor[J]. Journal of Alloys and Compounds, 2019, 787: 1044⁃1050.
											 											 | 
										
																													
																						| 33 | 
																						 
											 Han K H, Liu Y, Huang H, et al. Tremella⁃like NiO microspheres embedded with fish⁃scale⁃like polypyrrole for high⁃performance asymmetric supercapacitor[J]. RSC Advances, 2019, 9: 21608⁃21615.
											 											 | 
										
																													
																						| 34 | 
																						 
											 Hou R Z, Miao M, Wang Q R, et al. Integrated conductive hybrid architecture of metal⁃organic framework nanowire array on polypyrrole membrane for all‐solid‐state flexible supercapacitors[J].Advanced Energy Materials,2020,10(1):1901892.
											 											 | 
										
																													
																						| 35 | 
																						 
											 Xu X T, Tang J, Qian H Y, et al. Three⁃dimensional networked metal⁃organic frameworks with conductive polypyrrole tubes for flexible supercapacitors[J]. ACS Applied Material Interface, 2017, 9(44): 38737⁃38744.
											 											 | 
										
																													
																						| 36 | 
																						 
											 Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors[J]. Chemistry of Materials, 2006, 18(4): 867⁃871.
											 											 | 
										
																													
																						| 37 | 
																						 
											 Sun P, Wang W N, Liu Y P, et al. Hydrothermal synthesis of 3D urchin⁃like α⁃Fe2O3 nanostructure for gas sensor[J]. Sensors and Actuators B: Chemical, 2012, 173: 52⁃57.
											 											 | 
										
																													
																						| 38 | 
																						 
											 Le H J, Dao D V, Yu Y T, et al. Superfast and efficient hydrogen gas sensor using PdAualloy@ZnO core⁃shell nanoparticles[J]. Journal of Materials Chemistry A, 2020, 8(26): 12968⁃12974.
											 											 | 
										
																													
																						| 39 | 
																						 
											 董先明, 张淑婷, 罗颖, 等. 聚吡咯在气体传感器中的应用[J]. 材料导报, 2007, 21(1): 53⁃55.
											 											 | 
										
																													
																						 | 
																						 
											 Dong X M, Zhang S T, Luo Y, et al. Application of polypyrrole in gas sensors[J]. Materials Reports, 2007, 21(1): 53⁃55.
											 											 | 
										
																													
																						| 40 | 
																						 
											 Bai H, Shi G Q. Gas sensors based on conducting polymers[J]. Sensors, 2007, 7(3): 267⁃307.
											 											 | 
										
																													
																						| 41 | 
																						 
											 Tang X H, Raskin J P, Kryvutsa N, et al. An ammonia sensor composed of polypyrrole synthesized on reduced graphene oxide by electropolymerization[J]. Sensors and Actuators: B. Chemical, 2020, 305: 127423.
											 											 | 
										
																													
																						| 42 | 
																						 
											 Malook K, Khan H, Shah M, et al. Highly selective and sensitive response of polypyrrole⁃MnO2 based composites towards ammonia gas[J]. Polymer Composites, 2019, 40(4): 1676⁃1683.
											 											 | 
										
																													
																						| 43 | 
																						 
											 李勐, 郭保林. 导电高分子生物材料在组织工程中的应用[J]. 科学通报, 2019, 64(23): 2410⁃2424.
											 											 | 
										
																													
																						 | 
																						 
											 Li M, Guo B L. Application of conductive polymer biomaterials in tissue engineering[J]. Chinese Science Bulletin, 2019, 64(23): 2410⁃2424.
											 											 | 
										
																													
																						| 44 | 
																						 
											 Hardy J G,Lee J Y,Schmidt C E.Biomimetic conducting polymer⁃based tissue scaffolds[J].Current Opinion in Biotechnology,2013,24(5):847⁃854.
											 											 | 
										
																													
																						| 45 | 
																						 
											 Talebi A, Labbaf S, Karimzadeh F. Polycaprolactone‐chitosan‐polypyrrole conductive biocomposite nanofibrous scaffold for biomedical applications[J]. Polymer Composites, 2020, 41(2): 645⁃652.
											 											 | 
										
																													
																						| 46 | 
																						 
											 Balaji M, Nithya P, Mayakrishnan A, et al. Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering[J]. Applied Surface Science, 2020, 510: 145403.
											 											 |