1 |
Lu X F, Xia B Y, Zang S Q, et al. Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2019, 59(12): 4634⁃4650.
|
2 |
Xu J W, Zheng X L, Feng Z P, et al. Organic wastewater treatment by a single⁃atom catalyst and electrolytically produced H2O2[J]. Nature Sustainability, 2021, 4: 233⁃241.
|
3 |
Liu S Z, Cheng L, Li K, et al. The reaction pathways of the oxygen reduction reaction on IrN4 doped divacancy graphene:A theoretical study[J]. Journal of Molecular Graphics & Modelling, 2018, 80: 293⁃298.
|
4 |
Chen W, Lu Y Z, Jiang Y Y, et al. Charge state⁃dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two⁃electron reduction of dioxygen to hydrogen peroxide[J]. Chemical Communications, 2014, 50(62): 8464⁃8467.
|
5 |
Antolini E, Salgado J, Gonzalez E R. The stability of Pt–M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells[J]. Journal of Power Sources, 2006, 160(2): 957⁃968.
|
6 |
Lopes T, Antolini E, Colmati F, et al. Carbon supported Pt–Co (3∶1) alloy as improved cathode electrocatalyst for direct ethanol fuel cells[J]. Journal of Power Sources, 2007, 164(1): 111⁃114.
|
7 |
Zhan W C, Guo Y, Gong X Q, et al. Current status and perspectives of rare earth catalytic materials and catalysis[J]. Chinese Journal of Catalysis, 2014, 35(8): 1238⁃1250.
|
8 |
Soren S, Mohaptra B D, Mishra S, et al. Nano ceria supported nitrogen doped graphene as a highly stable and methanol tolerant electrocatalyst for oxygen reduction[J]. Rsc Advances, 2016, 6(80): 77100⁃77104.
|
9 |
Soren S, Hota I, Debnath A K, et al. Oxygen reduction reaction activity of microwave mediated solvothermal synthesized CeO2/g⁃C3N4 Nanocomposite[J]. Frontiers in Chemistry, 1970, 7: 403⁃410.
|
10 |
Meléndez‐González P, Sánchez‐Castro E, Alonso‐Lemus I L,et al. Bifunctional Pd⁃CeO2 nanorods/C nanocatalyst with high electrochemical stability and catalytic activity for the ORR and EOR in alkaline media[J]. Chemistry Select, 2020, 5 (44): 14032⁃14040.
|
11 |
沙畅畅,毛杨杨,曹永安,等. 用于锂硫电池正极的生物质碳材料制备与应用[J]. 石油化工高等学校学报, 2020, 33(3): 1⁃7.
|
|
Sha C C, Mao Y Y, Cao Y A, et al. Preparation and application of biomass⁃derived carbon materials in lithium⁃ sulfur battery cathode materials [J]. Journal of Petrochemical Universities, 2020, 33 (3): 1‐7.
|
12 |
昝逸凡, 张彦飞, 赵新鹏,等. 原生生物质水热炭化制备碳材料及其应用[J]. 辽宁石油化工大学学报, 2020, 40(4): 70⁃79.
|
|
Zan Y F, Zhang Y F, Zhao X P,et al.Preparation and application of carbon materials from primary biomass by hydrothermal carbonization[J].Journal of Liaoning Shihua Universities,2020,40(4):70‐79.
|
13 |
Chen L Y, Fujita T, Ding Y, et al. Nanoporous composites: A three⁃dimensional gold⁃decorated nanoporous copper core⁃shell composite for electrocatalysis and nonenzymatic biosensing[J]. Advanced Functional Materials, 2010, 20(14): 2279⁃2285.
|
14 |
Guo C Z, Zhou R, Li Z X, et al. Molten⁃salt/oxalate mediating Fe and N⁃doped mesoporous carbon sheet nanostructures towards highly efficient and durable oxygen reduction electrocatalysis[J]. Microporous and Mesoporous Materials, 2020, 303: 110281.
|
15 |
李淑媛, 常迎, 贾晶春,等. 磷氮双掺过渡金属碳基催化剂制备及其电化学氧还原的应用研究[J]. 内蒙古师范大学学报, 2021, 50(2): 95⁃101.
|
|
Li S Y, Chang Y, Jia J C, et al. Preparation of phosphorous and nitrogen dual⁃doped transition metal carbon⁃based catalyst and its application in electrochemical oxygen reduction[J].Journal of Inner Mongolia Normal University (Natural Science Edition),2021,50(2):95‐101.
|
16 |
Zagorac J, Schon J C, Matovic B, et al. Predicting feasible modifications of Ce2ON2 using a combination of global optimization and data mining[J]. Journal of Phase Equilibria and Diffusion, 2020, 41(4): 538⁃549.
|
17 |
Dong F, Cai Y X, Liu C, et al. Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electrocatalysis[J]. International Journal of Hydrogen Energy, 2018, 43(28): 12661⁃12670.
|
18 |
Hu J, Zou C, Su Y J M, et al. Light⁃assisted recovery for a highly⁃sensitive NO2 sensor based on RGO⁃CeO2 hybrids[J]. Sensors and Actuators B: Chemical, 2018, 270: 119⁃129.
|
19 |
Wang W, Xue S Y, Li J, et al. Cerium carbide embedded in nitrogen⁃doped carbon as a highly active electrocatalyst for oxygen reduction reaction[J]. Journal of Power Sources, 2017, 359: 487⁃493.
|
20 |
Wang X, Liu D P, Song S Y, et al. Pt@CeO2 multicore@shell self⁃assembled nanospheres: Clean synthesis, sructure optimization, and catalytic applications[J]. Journal of the American Chemical Society, 2013, 135(42): 15864⁃15872.
|
21 |
Zhu C L, Ding T, Gao W X, et al. CuO/CeO2 catalysts synthesized from Ce⁃uio⁃66 metal⁃organic framework for preferential CO oxidation[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17457⁃17465.
|
22 |
Yang Y, Tian C G, Sun L, et al. Growth of small sized CeO2 particles in the interlayers of expanded graphite for high⁃performance room temperature NOx gas sensors[J]. Journal of Materials Chemistry A, 2013, 1(41): 12742⁃12749.
|
23 |
Li J, Liu G Y, Liu B B, et al. An extremely facile route to Co2P encased in N, P⁃codoped carbon layers: Highly efficient bifunctional electrocatalysts for ORR and OER[J]. International Journal of Hydrogen Energy, 2017, 43(3): 1365⁃1374.
|
24 |
Jiang Y Y,Ni P J,Chen C X,et al.Selective electrochemical H2O2 production through two⁃electron oxygen electrochemistry[J]. Advanced Energy Materials, 2018, 8(31): 1801909.
|