石油化工高等学校学报 ›› 2018, Vol. 31 ›› Issue (03): 1-06.DOI: 10.3969/j.issn.1006-396X.2018.03.001

• 本期推荐 • 上一篇    下一篇

汽油分子组成模型构建

崔晨蔡广庆张霖宙   

  1. (中国石油大学(北京) 重质油国家重点实验室,北京 102249)
  • 收稿日期:2017-12-29 修回日期:2018-05-15 出版日期:2018-06-25 发布日期:2018-07-11
  • 通讯作者: 张霖宙(1987-),男,博士,副教授,从事重油化学及转化规律研究;E-mail:Lzz@cup.edu.cn。
  • 作者简介:崔晨(1988-),男,博士研究生,从事汽油分子组成和性质模型方面的研究;E-mail:cuichen0497@foxmail.com。
  • 基金资助:
    国家自然科学基金青年科学基金项目(21506254);中国石油大学(北京)科研基金资助(2462014YJRC020)

Compositional Model Development for Gasoline

Cui Chen,Cai Guangqing,Zhang Linzhou   

  1. (State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249,China)
  • Received:2017-12-29 Revised:2018-05-15 Published:2018-06-25 Online:2018-07-11

摘要: 针对汽油建立了分子库,并开发了汽油分子组成模拟的方法,使所得结果可以用于以后的加工模拟和调和模拟中。根据汽油分子的结构特点,预定义了166个分子,并采用模拟退火的方法优化,通过汽油的宏观性质反算其分子组成。研究采用一套催化裂化汽油的数据验证了模型的准确性。所得关键性质的预测值与实验值平均相对偏差小于2%,全性质平均相对偏差小于5%。所得PIONA组成分布趋势与实验值基本一致,可以认为模型模拟所得的汽油分子组成能够代表该汽油样品的实际组成。

关键词: 汽油, 分子管理, 分子组成, 模拟退火

Abstract: The present work develops a computer-aided algorithm to transform gasoline bulk property into molecular composition. We pre-defined 166 representative gasoline molecules according to the compositional characteristics. Simulated annealing method was used to find a molecular distribution that has bulk property very closed to the measured data. The accuracy of the model is verified by using a set of FCC gasoline data. The relative error of predicted and measure key property is lower than 2% and the overall relative error is lower than 5%. The predicted PIONA composition is in good agreement with experimental results, indicating that the obtained compositional information is in consisted with the actual composition.

Key words: Gasoline, Molecular management, Molecular composition, Simulated annealing

引用本文

崔晨, 蔡广庆, 张霖宙. 汽油分子组成模型构建[J]. 石油化工高等学校学报, 2018, 31(03): 1-06.

Cui Chen, Cai Guangqing, Zhang Linzhou. Compositional Model Development for Gasoline[J]. Journal of Petrochemical Universities, 2018, 31(03): 1-06.

使用本文