石油化工高等学校学报

石油化工高等学校学报 ›› 2007, Vol. 20 ›› Issue (1): 85-89.

• 计算机与自动化 • 上一篇    下一篇

基于人工神经网络的脂肪醇闪点预测

潘 勇, 蒋军成   

  1. 南京工业大学城市建设与安全环境学院,江苏南京210009
  • 收稿日期:2006-09-12 出版日期:2007-03-20 发布日期:2017-06-28
  • 作者简介:潘勇(1981-),男,江苏溧阳市,在读博士研究生。
  • 基金资助:
    国家自然科学基金资助项目(No.29936110)。

 
Prediction of Flash Points of Fatty Alcohols Based on Artificial Neural Networks

PAN YongJIANG Jun-cheng   

  1. College of Urban Construction and Safety & Environmental Engineering, Nanjing University of Technology, Nanjing Jiangsu 210009,P.R.China
  • Received:2006-09-12 Published:2007-03-20 Online:2017-06-28

摘要: 建立了一个基于人工神经网络方法的定量结构-性质相关性(QSPR)研究模型,用于预测脂肪醇闪点。根据脂肪醇的分子结构特征,提出一组拓扑指数作为表征脂肪醇分子结构的分子描述符。同时引入具有高度非线性预测能力的误差反向传播人工神经网络方法,以分子结构描述符作为神经网络的输入参数,闪点作为输出,研究脂肪醇的闪点与分子结构之间的相关性。模拟结果表明,闪点预测值与实验值符合良好,优于传统基团贡献法所得结果。该方法不仅能够预测脂肪醇闪点与分子结构之间的定量关系,而且为工程上提供了一种预测有机物闪点的新的有效方法。

关键词: 人工神经网络 , 闪点 , 分子结构描述符 , 脂肪醇

Abstract:  

A quantitative structure-property relationship (QSPR) model based on artificial neural networks was established to predict the flash points of fatty alcohols. A set of topological indices was used as molecular structure descriptors to describe the molecular structure characteristics of fatty alcohols. Using the back-propagation artificial neural networks which have the satisfactory nonlinear prediction ability, the correlation between molecular structures and flash points of fatty alcohols was studied with molecular structure descriptors as input parameters and flash point as output one. The results show that the predicted flash points are in good agreement with the experimental data, which are superior to those of conventional group contribution methods. The method proposed can be used to predict not only the quantitative relation between flash points and molecular structures of fatty alcohols but also the flash points of organic compounds for engineering.

Key words:  

引用本文

潘 勇, 蒋军成. 基于人工神经网络的脂肪醇闪点预测[J]. 石油化工高等学校学报, 2007, 20(1): 85-89.

PAN Yong, JIANG Jun-cheng.  

Prediction of Flash Points of Fatty Alcohols Based on Artificial Neural Networks
[J]. Journal of Petrochemical Universities, 2007, 20(1): 85-89.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/syhg/CN/

               https://journal.lnpu.edu.cn/syhg/CN/Y2007/V20/I1/85