| [1] |
XIA K Q, WU D, FU J M, et al. Tunable output performance of triboelectric nanogenerator based on alginate metal complex for sustainable operation of intelligent keyboard sensing system[J]. Nano Energy, 2020, 78: 105263.
|
| [2] |
邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477.
|
|
SHAO Z G, YI B L. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(4): 469-477.
|
| [3] |
MALLICK P, SAHOO S K, SATPATHY S K. Different strategies to improve photocatalytic activity of graphitic carbon nitride(g-C3N4) semiconductor nanomaterials for hydrogen generation[J]. Journal of Molecular Liquids, 2024, 406: 125071.
|
| [4] |
谢磊, 刘帅, 孙有为, 等. 石墨相氮化碳光催化剂的研究进展[J]. 石油化工高等学校学报, 2021, 34(6): 27-34.
|
|
XIE L, LIU S, SUN Y W, et al. Research progress of graphite carbon nitride photocatalyst[J]. Journal of Petrochemical Universities, 2021, 34(6): 27-34.
|
| [5] |
NAGELLA S R, VIJITHA R, RAMESH NAIDU B, et al. Benchmarking recent advances in hydrogen production using
|
|
g-C3N4-based photocatalysts[J]. Nano Energy, 2023, 111: 108402.
|
| [6] |
陆亚男, 邹晓莉, 王磊, 等. ZnIn2S4/g-C3N4/MoS2三元异质结的制备及其光催化产氢性能[J]. 聊城大学学报(自然科学版), 2023, 36(6): 57-64.
|
|
LU Y N, ZOU X L, WANG L, et al. Preparation and hydrogen evolution properties of ZnIn2S4/g-C3N4/MoS2 ternary heterojunctions[J]. Journal of Liaocheng University (Natural Science Edition), 2023, 36(6): 57-64.
|
| [7] |
LI D D, DONG Y M, WANG G L, et al. Controllable photochemical synthesis of amorphous Ni(OH)2 as hydrogen production cocatalyst using inorganic phosphorous acid as sacrificial agent[J]. Chinese Journal of Catalysis, 2020, 41(5): 889-897.
|
| [8] |
张彭义, 余刚, 蒋展鹏. 半导体光催化剂及其改性技术进展[J]. 环境科学进展, 1997, 5(3): 1-10.
|
|
ZHANG P Y, YU G, JIANG Z P. Review of semiconductor photocatalyst and its modification[J]. Advances in Environmental Science, 1997, 5(3): 1-10.
|
| [9] |
JIANG Z, LIU D S, LI C H, et al. Signature of p-type semiconductor features in paper-based back gate metal-organic framework thin-film transistors[J]. Applied Physics Letters, 2020, 117(9): 093303.
|
| [10] |
WANG X N, WU L, WANG Z W, et al. C/N vacancy co-enhanced visible-light-driven hydrogen evolution of g-C3N4 nanosheets through controlled He+ion irradiation[J]. Solar RRL, 2019, 3(4): 1800298.
|
| [11] |
FAN J P, WANG H T, SUN W, et al. Recent developments and perspectives of Ti-based transition metal carbides/nitrides for photocatalytic applications: A critical review[J]. Materials Today, 2024, 76: 110-135.
|
| [12] |
WANG H T, FAN J P, ZOU J, et al. Sulfur-doped g-C3N4/V2C MXene schottky junctions for superior photocatalytic H2 evolution[J]. Journal of Materials Chemistry A, 2024, 12(44): 30429-30441.
|
| [13] |
REHMAN Z U, BILAL M, REHMAN S U, et al. Boron doped g-C3N4 porous nanosheets to increase electron-hole pair generation for excellent photocatalytic H2 production and CO2 reduction[J]. Separation and Purification Technology, 2025, 354(Part 8): 129535.
|
| [14] |
KHANBEIKI O, GHASEMI S, EMADI H. Preparation of NiFe layered double hydroxide/graphitic carbon nitride nanocomposite for enhanced sonocatalytic deterioration of tetracycline hydrochloride[J]. Diamond and Related Materials, 2024, 143: 110852.
|
| [15] |
荆慧娟, 栾梦格, 叶灏霖, 等. 超分子自组装法制备钒掺杂的g-C3N4纳米管及其光催化制氢性能[J]. 聊城大学学报(自然科学版), 2025, 38(6): 927-934.
|
|
JING H J, LUAN M G, YE H L, et al. Preparation of vanadium-doped g-C3N4 nanotubes via supramolecular self-assembly method and its photocatalytic hydrogen production performance[J]. Journal of Liaocheng University (Natural Science Edition), 2025, 38(6): 927-934.
|
| [16] |
XIAO Y T, GUO S E, TIAN G H, et al. Synergetic enhancement of surface reactions and charge separation over holey C3N4/TiO2 2D heterojunctions[J]. Science Bulletin, 2021, 66(3): 275-283.
|
| [17] |
GUO R F, LIU Z H, GU Q, et al. BCN/Bi2O2[BO2(OH) hollow hemisphere nanocomposite with 2D-2D Z-scheme heterostructure for excellent photocatalytic water purification[J]. Applied Surface Science, 2025, 701: 163288.
|
| [18] |
ZHANG M L, YANG L, WANG Y J, et al. High yield synthesis of homogeneous boron doping C3N4 nanocrystals with enhanced photocatalytic property[J]. Applied Surface Science, 2019, 489: 631-638.
|
| [19] |
CHEN X X, CHEN C Z, ZANG J Y. Construction of B-doped g-C3N4/MoO3 photocatalyst to promote light absorption and Z-scheme charge transfer[J]. Diamond and Related Materials, 2023, 132: 109606.
|
| [20] |
杜恭贺. 石墨烯及其掺杂体系电子结构性质的理论研究[D]. 西安: 西北大学, 2010.
|
| [21] |
LIU K N, WANG X, LI C, et al. Facile fabrication metal Cu-decorated g-C3N4 photocatalyst with schottky barrier for efficient pollutant elimination[J]. Diamond and Related Materials, 2022, 126: 109116.
|
| [22] |
DHANARAMAN E, VERMA A, ANAND P, et al. Influence of B-atom in g-C3N4 matrix to enhance the photocatalytic dinitrogen to ammonia conversion[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111323.
|
| [23] |
陈金宝, 李开宁, 黎小芳, 等. 结晶氮化碳的制备与改性策略[J]. 无机化学学报, 2021, 37(10): 1713-1726.
|
|
CHEN J B, LI K N, LI X F, et al. Preparation and modification of crystalline carbon nitride[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(10): 1713-1726.
|
| [24] |
FAN J P, WANG H T, LIAO G D, et al. Potassium-doped g-C3N4/nitrogen-doped g-C3N4 step-scheme homojunction for enhanced H2 evolution photocatalysis[J]. Science China Technological Sciences, 2025, 68(6): 1620206.
|
| [25] |
YU G Y, ZHAO H T, XING C W, et al. Creation of carbon defects and in-plane holes with the assistance of NH4Br to enhance the photocatalytic activity of g-C3N4[J]. Catalysis Science & Technology, 2021, 11(15): 5349-5359.
|
| [26] |
LIU E L, LIN X, HONG Y Z, et al. Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution[J]. Renewable Energy, 2021, 178: 757-765.
|
| [27] |
SUN L D, LI Y, FENG W. Gas-phase fluorination of g-C3N4 for enhanced photocatalytic hydrogen evolution[J]. Nanomaterials, 2021, 12(1): 37.
|
| [28] |
ZHANG J Y, HU Y F, LI H, et al. Molecular self-assembly of oxygen deep-doped ultrathin C3N4 with a built-in electric field for efficient photocatalytic H2 evolution[J]. Inorganic Chemistry, 2021, 60(20): 15782-15796.
|
| [29] |
LIU Y F, MA Z. g-C3N4 modified by pyropheophorbide-a for photocatalytic H2 evolution[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2021, 615: 126128.
|
| [30] |
YANG H Y, ZHOU Y M, WANG Y Y, et al. Three-dimensional flower-like phosphorus-doped g-C3N4 with a high surface area for visible-light photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(34): 16485-16494.
|
| [31] |
ZHOU Y J, ZHANG L X, LIU J J, et al. Brand new P-doped g-C3N4: Enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light[J]. Journal of Materials Chemistry A, 2015, 3(7): 3862-3867.
|
| [32] |
LIU X L, GUO Y H, WANG P, et al. The synergy of thermal exfoliation and Phosphorus doping in g-C3N4 for improved photocatalytic H2 generation[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3595-3604.
|
| [33] |
GUO H, SHU Z, CHEN D H, et al. One-step synthesis of S-doped g-C3N4 nanosheets for improved visible-light photocatalytic hydrogen evolution[J]. Chemical Physics, 2020, 533: 110714.
|
| [34] |
张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用[J]. 物理化学学报, 2013, 29(9): 1865-1876.
|
|
ZHANG J S, WANG B, WANG X C. Chemical synthesis and applications of graphitic carbon nitride[J]. Acta Physico-Chimica Sinica, 2013, 29(9): 1865-1876.
|
| [35] |
张力嫱, 高陆玺, 吕雪川, 等. 铁改性石墨相氮化碳催化苯酚羟基化反应合成二酚[J].石油学报(石油加工),2020,36(2): 403-409.
|
|
ZHANG L Q, GAO L X, LÜ X C. Hydroxylation of phenol to produce dihydroxybenzene catalyzed by iron modified graphitic carbon nitride [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(2): 403-409.
|
| [36] |
DUAN H Q, FAN J P, LIU C, et al. Green synthesis of phosphorus-doped g-C3N4 as an advanced photocatalyst for H2 evolution[J]. Nano Energy, 2025, 20(9): 2550032.
|
| [37] |
杨文科, 卢连雪, 李鹏, 等. 光催化材料石墨相氮化碳的合成、改性及应用[J]. 石油化工高等学校学报, 2024, 37(1): 43-51.
|
|
YANG W K, LU L X, LI P, et al. Synthesis, modification and application of photocatalytic material graphite phase carbon nitride[J]. Journal of Petrochemical Universities, 2024, 37(1): 43-51.
|
| [38] |
袁瀚钦, 董雯, 吴兴良, 等. 改性石墨相氮化碳活化过硫酸盐降解水中有机污染物的研究进展[J]. 化工环保, 2022, 42(6): 645-653.
|
|
YUAN H Q, DONG W, WU X L, et al. Research progress of modified graphitic carbon nitride activating persulfate for degradation of organic pollutants in water[J]. Environmental Protection of Chemical Industry, 2022, 42(6): 645-653.
|