石油化工高等学校学报

石油化工高等学校学报 ›› 2009, Vol. 22 ›› Issue (4): 89-94.DOI: 10.3696/j.issn.1006-396X.2009.04.022

• 化工机械 • 上一篇    下一篇

基于SOM-PCA-RVM 的过程建模及其应用

李昕,颜学峰   

  1. 华东理工大学自动化研究所,上海200237
  • 收稿日期:2008-10-20 修回日期:2009-04-04 出版日期:2009-12-25 发布日期:2009-12-25
  • 作者简介:李昕(1983 -), 男, 湖北红安县, 在读硕士
  • 基金资助:
    国家自然科学基金(20776042);国家863 项目(2007AA04Z164)

Process Modeling Based on SOM-PCA-RVM and Its Application

  1. Automation Institute, East China University of Science and Technology, Shanghai 200237,P.R. China
  • Received:2008-10-20 Revised:2009-04-04 Published:2009-12-25 Online:2009-12-25

摘要: 针对呈现高度非线性,自变量之间存在交互作用,且采集的过程数据具有一定类别特征的复杂系统,提出基于自组织映射神经网络—主元分析—关联向量机相结合的建模方法。首先,通过SOM,将样本分割成模式特性相近的若干子类,实现样本模式空间的分割。然后,基于每一子空间的建模样本,提取主元,并以预测性能为指标确定最佳主元个数,消除冗余信息干扰。最后,将各子空间的主元分别作为RVM模型的输入,建立各自的模型,实现基于样本模式空间分割的分类建模。仿真试验和在精对苯二甲酸生产过程对羧基苯甲醛含量软测量中的实际应用表明,SOM-PCA-RVM模型的拟合精度和预测精度不仅优于RVM模型,也优于PCA-RVM模型。

关键词: 自组织映射网络 , 主元分析 , 关联向量机 , 软测量 , 对羧基苯甲醛

Abstract: A hybrid modeling method for the complex process was proposed.The process,which was highly nonlinearity,had interacting independent variables, and had process data belonged to different categories. This method combined self-organizing map network (SOM network),principal component analysis (PCA),and relevance vector machine (RVM).First,
divided the sample datum into several subspaces which had the same patterns with the utilizing of SOM,the pattern space separation was realized.Then derived the principal components based on the modeling samples of each subspace,defined the optimal principal component numbers based on prediction ability,and filtered the redundancy.At last,the principal component
of each subspace was applied as the input of RVM,building the models individually ,and the classifying modeling was realized based on the separated of sample pattern spaces.The simulation results and the application in 4-carboxybenzaldehyde content soft sensor of pureed terephthalic acid production show that the accuracies of regressing and predicting of SOM-PCA -RVM model is better than both RVM model and PCA - RVM model.

Key words: SOM network , Principal component analysis , Relevance vector machine , Soft sensor , 4-Carboxybenzaldehyde

引用本文

李昕,颜学峰. 基于SOM-PCA-RVM 的过程建模及其应用[J]. 石油化工高等学校学报, 2009, 22(4): 89-94.

LI Xin, YAN Xue-feng. Process Modeling Based on SOM-PCA-RVM and Its Application[J]. Journal of Petrochemical Universities, 2009, 22(4): 89-94.

使用本文