石油化工高等学校学报

石油化工高等学校学报 ›› 2009, Vol. 22 ›› Issue (2): 88-92.

• 计算机与控制 • 上一篇    下一篇

一种基于支持向量机与纹理的岩屑识别算法

杨晓敏1, 冉 飞2, 吴 炜1, 陈 默1, 何小海1   

  1. 1.四川大学电子信息学院图像信息研究所,四川成都610064;
    2.中石化石油工程西南公司地质录井分公司研究院,四川绵阳621000
  • 收稿日期:2008-08-27 修回日期:2008-12-23 出版日期:2009-06-25 发布日期:2009-06-25
  • 作者简介:杨晓敏(1980 -), 女, 辽宁鞍山市, 在读博士
  • 基金资助:
    四川省科技攻关项目资助(No .05GG021 -026 -03)

A Cutting Recognition Algorithm Based on Support Vector Machine and Texture

  1. 1.Colledge of Electronics & Information Engineering, Sichuan University, Chengdu Sichuan 610064, P. R. China;
    2.Log Branch of Southwest Petroleum Engineering Co.Ltd.  Sinopec, Mianyang Sichuan 621000, P. R. China
  • Received:2008-08-27 Revised:2008-12-23 Published:2009-06-25 Online:2009-06-25

摘要: 针对在随钻过程中如何自动、快速、准确地识别岩屑的问题,对岩屑的纹理进行了深入的分析研究,采用Gabor滤波器对不同岩性的岩屑图像进行纹理提取和分析,提取了反映不同岩屑图像纹理结构的特征参数,最后将支持向量机应用到岩屑的识别过程中,取得了较好的识别效果。通过对四川洛带气田4口井的现场随钻,结果证明算法识别正确率达到90%以上,为快速自动录井提供了一条有效的途径。

关键词: 岩屑识别 , 支持向量机 , 纹理 , Gabor 滤波器

Abstract: In the cutting logging process,how to recognize the cuttings automatically ,quickly and correctly is very important.A cutting recognition algorithm based on Gabor filter and SVM was proposed to resolve this problem. The algorithm used
Gabor filter to get the cuttings' features.Then the features were used to train the support vector machine classifier and the cuttings were classified by using the trained support vector machine.Using the algorithm,after logged 4 wells of Luodai gas reservoir,a high recognition rate can be reached at 90%. The experimental results demonstrate the algorithm is feasible,robust and applicable.

Key words: Cutting recognition , Support vector machine , Texture , Gabor filter

引用本文

杨晓敏,冉 飞,吴 炜,陈 默,何小海. 一种基于支持向量机与纹理的岩屑识别算法[J]. 石油化工高等学校学报, 2009, 22(2): 88-92.

YANG Xiao-min,RAN Fei,WU Wei,CHEN Mo,et al. A Cutting Recognition Algorithm Based on Support Vector Machine and Texture[J]. Journal of Petrochemical Universities, 2009, 22(2): 88-92.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/syhg/CN/

               https://journal.lnpu.edu.cn/syhg/CN/Y2009/V22/I2/88