石油化工高等学校学报

石油化工高等学校学报 ›› 2009, Vol. 22 ›› Issue (1): 82-85.

• 计算机与控制 • 上一篇    下一篇

KPCA-RVM组合建模方法及其在软测量中的应用

颜学峰, 陈 佳, 胡春平, 钱 锋   

  1. 华东理工大学自动化系,上海200237
  • 收稿日期:2008-05-16 修回日期:2008-06-23 出版日期:2009-03-25 发布日期:2009-03-25
  • 作者简介:颜学峰(1972 -), 男, 福建福州市, 教授, 博士
  • 基金资助:
    国家自然科学基金(20506003 , 20776042);国家863 项目(2007AA04Z164);国家杰出青年科学基金(60625302)

KPCA - RVM Modeling Method and Its Application for Soft Sensor

  1. Department of Automation, East China University of Science and Technology, Shanghai 200237, P. R. China
  • Received:2008-05-16 Revised:2008-06-23 Published:2009-03-25 Online:2009-03-25

摘要: 提出了一种核主元分析(KPCA)和关联向量机(RVM)相结合的组合建模方法。KPCA - RVM采用KPCA对原始自变量进行非线性变换并提取主成分,形成特征自变量;采用 RVM,对 KPCA变换后的样本数据进行回归建模,并根据模型的预报能力自适应的确定参与回归的最佳特征变量个数,消除冗余信息干扰,获得强非线性表达能力且预报性能良好的模型。并将KPCA - RVM应用于 PTA装置对羧基苯甲醛(4 - CBA)含量的软测量建模,结果表明该方法预测精度高于PCA - RVM和RVM。

关键词: 核主元分析 , 关联向量机 , 软测量 , 对羧基苯甲醛

Abstract: A novel modeling method integrated KPCA with RVM was proposed. The kernel primary component analysis (KPCA) was employed to identify the principal components from the nonlinear transform data of independent variables,which were regarded as character variables.Regression between character variables and dependent variables was done based on RVM,and the optimal number of the character variables was adaptively determined according to the generalization performance of the regression model.Thus ,KPCA-RVM method could eliminate the disturbance of redundant information and achieve the best nonlinear model with good generalization performance.The method of KPCA-RVM was demonstrated by a 4-CBA’s content soft -sensing of PTA.Simulation results show this method is effective and the performance is better than those of PCA-RVM and RVM.

Key words: Kernel PCA , Relevance vector machine , Soft sensor , 4-carbexybenzaldehyde

引用本文

颜学峰, 陈 佳, 胡春平, 钱 锋. KPCA-RVM组合建模方法及其在软测量中的应用[J]. 石油化工高等学校学报, 2009, 22(1): 82-85.

YAN Xue-feng, CHEN Jia, HU Chun-ping, QIAN Feng. KPCA - RVM Modeling Method and Its Application for Soft Sensor[J]. Journal of Petrochemical Universities, 2009, 22(1): 82-85.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/syhg/CN/

               https://journal.lnpu.edu.cn/syhg/CN/Y2009/V22/I1/82