石油化工高等学校学报 ›› 2007, Vol. 20 ›› Issue (3): 86-88.

• 智能控制 • 上一篇    下一篇

RBF 神经网络算法及其应用

张顶学, 刘新芝, 关治洪   

  1. (华中科技大学控制科学与工程系, 湖北武汉430074)
  • 收稿日期:2007-02-05 出版日期:2007-09-20 发布日期:2017-07-05
  • 作者简介:张顶学(1975 -), 男, 湖北潜江市, 在读博士
  • 基金资助:
    国家自然科学基金资助项目(60573005)。

Radial Basis Function Neural Netw ork Algo ri thm and I ts Applicat ion

  1. (Department of Control Science & Engineering,Huazhong University of Science & Technology, Wuhan Hubei 430074,P.R.China)
  • Received:2007-02-05 Published:2007-09-20 Online:2017-07-05

摘要: 在径向基神经网络学习算法的基础上, 提出了一种新的RBF 神经网络学习算法, 该算法将变长度染
色体遗传算法和最小二乘法相结合, 能够同时确定径向基神经网络的结构和参数。用此方法建立热电厂热负荷预
测模型, 并与BP 神经网络和增长型结构学习算法的RBF 神经网络方法相比较, 结果表明可以取得更好的效果。

关键词: RBF 神经网络 , 遗传算法 , 最小二乘法 , BP 神经网络 , 热负荷

Abstract:

Based on the study of radial basis function (RBF) neural network training algorithm, a new RBF neural network training algorithm was introduced by combining genetic algorithm of chromosomes with changeable length and least-square method. It is able to determine the structure and parameters of network. The new training algorithm was used to model heat loading forecasting for co-generation power plants, compares with BP neural network and RBF neural network based on a training algorithm of automatic increase in hidden nodes. Simulation results show that the proposed method is valid.

Key words:

引用本文

张顶学, 刘新芝, 关治洪. RBF 神经网络算法及其应用[J]. 石油化工高等学校学报, 2007, 20(3): 86-88.

ZHANG Ding-xue,LIU Xin-zhi,GUAN Zhi-hong. Radial Basis Function Neural Netw ork Algo ri thm and I ts Applicat ion[J]. Journal of Petrochemical Universities, 2007, 20(3): 86-88.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/syhg/CN/

               https://journal.lnpu.edu.cn/syhg/CN/Y2007/V20/I3/86