| [1] |
KRYSHTANOVYCH M, TANASHCHUK K, KUPCHAK V, et al. Increasing the effectiveness of state policy in ensuring energy security and environmental protection[J]. International Journal of Energy Production and Management, 2024, 9(1): 9⁃17.
|
| [2] |
DAVID L O, NWULU N I, AIGBAVBOA C O, et al. Integrating fourth industrial revolution (4IR) technologies into the water, energy & food nexus for sustainable security: A bibliometric analysis[J]. Journal of Cleaner Production, 2022, 363: 132522.
|
| [3] |
杨昊治, 苏鹏, 吴江, 等. 发动机颗粒物产生机理及排放特性的研究现状[J]. 当代化工, 2023, 52(6): 1430⁃1435.
|
|
YANG H Z, SU P, WU J, et al. Research status of engine particulate matter generation mechanism and emission characteristics[J]. Contemporary Chemical Industry, 2023, 52(6): 1430⁃1435.
|
| [4] |
YASUNORI S, YUKITOSHI F, MORITSUGU K. The performance of diesel engine oil using ashless anti⁃wear additive and detergent[J]. SAE International Journal of Advances and Current Practices in Mobility, 2024, 6(3): 1393⁃1398.
|
| [5] |
DIABY M, SABLIER M, LE NEGRATE A, et al. Understanding carbonaceous deposit formation resulting from engine oil degradation[J]. Carbon, 2009, 47(2): 355⁃366.
|
| [6] |
AHMED N S, NASSAR A M, ABDEL⁃HAMEED H S, et al. Preparation, characterization, and evaluation of some ashless detergent/dispersant additives for lubricating engine oil[J]. Applied Petrochemical Research, 2016, 6(1): 49⁃58.
|
| [7] |
谢欣. 添加剂对SP/GF⁃6发动机油活塞清净性和节能性能的影响[J]. 石油炼制与化工, 2025, 56(3): 113⁃120.
|
|
XIE X. Effect of additives on piston cleanliness and energy reduction performance of SP/GF⁃6 engine oil[J]. Petroleum Processing and Petrochemicals, 2025, 56(3): 113⁃120.
|
| [8] |
KASAI M, KOSHIMA H, TAKASHIMA Y. Piston detergency and anti⁃wear performance of non⁃phosphorus and non⁃ash engine oil: 2019⁃01⁃0021[R]. Warrendale: SAE International, 2019.
|
| [9] |
KAUL B, KASS M, NAFZIGER E, et al. Lubricant impacts on piston deposit formation in the enterprise marine diesel research engine[R]. Oak Ridge: Oak Ridge National Laboratory(ORNL), 2023.
|
| [10] |
KASAI M, KOSHIMA H, TAKASHIMA Y. Piston detergency and anti⁃wear performance of non⁃phosphorus and non⁃ash engine oil: 2019⁃01⁃0021[R]. Warrendale: SAE International, 2019.
|
| [11] |
CHENG S S. The effects of engine oils on intake valve deposits and combustion chamber deposits: 932810[R]. Warrendale, PA: SAE International, 1993.
|
| [12] |
UEDA M, HANYUDA K, KUBO K. Effect of thermal stability of additives on diesel engine piston underside deposit: 2015⁃01⁃2036[R]. Warrendale: SAE International, 2015.
|
| [13] |
TAN K W, EISENBERG B, HUTCHINSON P A, et al. Impact of viscosity index improvers (Ⅶ) on the formation of piston deposits in fuel economy engine oils: 2019⁃01⁃2202[R]. Warrendale: SAE International, 2019.
|
| [14] |
MENDIRATTA R L, SINGH D. Effect of base oil and additives on combustion chamber and intake valve deposits formation in IC engine: 2004⁃28⁃0089[R]. Pune: The Automotive Research Association of India, 2004.
|
| [15] |
TAYLOR R I. Fuel⁃lubricant interactions: Critical review of recent work[J]. Lubricants, 2021, 9(9): 92.
|
| [16] |
ANSOMBOON J, WUTTIMONGKOLCHAI A, PANNOI S, et al. Characterization of deposits and effects of detergent additive, olefin content and engine oil on intake valve deposit formation: 2000⁃01⁃2856[R]. Warrendale: SAE International, 2000.
|
| [17] |
YOSHIDA S, NAITOH Y. Analysis of deposit formation mechanism on TEOST 33C by engine oil containing MoDTC[J]. SAE International Journal of Fuels and Lubricants, 2008, 1(1): 1534⁃1539.
|
| [18] |
HANTHORN J, SCHMIESING J. Identifying the limitations of the hot tube test as a predictor of lubricant performance in small engine applications: 2019⁃32⁃0510[R]. Tokyo: SAE Technical Paper, 2020.
|
| [19] |
OHKAWA S, SETO K, NAKASHIMA T, et al. "Hot tube test"⁃analysis of lubricant effect on diesel engine scuffing: 840262[R]. Warrendale: SAE International, 1984.
|
| [20] |
杨睿, 杜斌, 张志凌, 等. 润滑油结焦行为的实验室评价[J]. 石油学报(石油加工), 2013, 29(5): 813⁃817.
|
|
YANG R, DU B, ZHANG Z L, et al. Experimental evaluation of coking behavior of lubricating oils[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(5): 813⁃817.
|
| [21] |
UY D, PRANIS G, MORELLI A, et al. Correlating laboratory oil aerosol coking rig tests to diesel engine tests to understand the mechanisms responsible for turbocharger compressor coking: 2017⁃01⁃0887[R]. Warrendale: SAE International, 2017.
|
| [22] |
HAMIDULLAYEVNA A Z, PARPIYEVNA N G, KABULOVNA S D. Causes of contamination of lubricants used in diesel engines[J]. Texas Journal of Engineering and Technology, 2022, 13: 44⁃46.
|
| [23] |
GATTO V, MOEHLE W, SCHNELLER E, et al. A review of engine oil oxidation bench tests and their application in the screening of new antioxidant systems for low Phosphorus engine oils[J]. Journal of ASTM International, 2007, 4(7): 1⁃13.
|