1 |
ZHAO S Q, GUO Z Q, YAN K, et al. Towards high⁃energy⁃density lithium⁃ion batteries: Strategies for developing high⁃capacity lithium⁃rich cathode materials[J]. Energy Storage Materials, 2021, 34: 716⁃734.
|
2 |
ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium⁃ion battery upon impact loading[J]. Electrochimica Acta, 2022, 432: 141192.
|
3 |
杨扬, 孟超, 胡涵, 等. NiCo2O4/Ru复合催化剂的制备及锌空电池的应用[J]. 石油化工高等学校学报, 2022, 35(5): 64⁃70.
|
|
YANG Y, MENG C, HU H, et al. Preparation of NiCo2O4/Ru composite catalysts and application of Zn⁃Air batteries[J]. Journal of Petrochemical Universities, 2022, 35(5): 64⁃70.
|
4 |
王国良, 狄心莹. 一种基于PCA和相关向量机的锂电池在线寿命预测方法研究[J]. 辽宁石油化工大学学报, 2022, 42(6): 84⁃89.
|
|
WANG G L, DI X Y. A method for online life prediction of lithium batteries based on PCA and relevance vector machine[J]. Journal of Liaoning Petrochemical University, 2022, 42(6): 84⁃89.
|
5 |
PENG C, LAHTINEN K, MEDINA E, et al. Role of impurity copper in li⁃ion battery recycling to LiCoO2 cathode materials[J]. Journal of Power Sources, 2020, 450: 227630.
|
6 |
ZHONG Z Q, CHEN L Z, ZHU C B, et al. Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance[J]. Journal of Power Sources, 2020, 464: 228235.
|
7 |
XIE Y, MENG S, CHEN X, et al. Synergetic effect of high Ni ratio and low oxygen defect interface zone of single crystals on the capacity retention of lithium rich layered oxides[J]. Journal of Colloid and Interface Science, 2021, 594: 485⁃492.
|
8 |
XIE Z Q, WU X C, ZHANG Y Y, et al. Insight into the effect of Nb5+ on the crystal structure and electrochemical performance of the Li⁃rich cathode materials[J]. Journal of Electroanalytical Chemistry, 2022, 922: 116762.
|
9 |
BAI M H, HU L N, LIANG Y H, et al. Enhanced electrochemical properties of lithium⁃rich cathode materials by magnesium borate surface coating[J]. Chemistry Select, 2021, 6(9): 2446⁃2455.
|
10 |
CHENG X P, ZHENG J M, LU J X, et al. Realizing superior cycling stability of Ni⁃rich layered cathode by combination of grain boundary engineering and surface coating[J]. Nano Energy, 2019, 62: 30⁃37.
|
11 |
WANG E R, XIAO D D, WU T H, et al. Al/Ti synergistic doping enhanced cycle stability of Li⁃rich layered oxides[J]. Advanced Functional Materials, 2022, 32(26): 2201744.
|
12 |
HU S J, PILLAI A S, LIANG G M, et al. Li⁃rich layered oxides and their practical challenges: Recent progress and perspectives[J]. Electrochemical Energy Reviews, 2019, 2(2): 277⁃311.
|
13 |
YU R Z, WANG X Y, FU Y Q, et al. Effect of magnesium doping on properties of lithium⁃rich layered oxide cathodes based on a one⁃step co⁃precipitation strategy[J]. Journal of Materials Chemistry A, 2016, 4(13): 4941⁃4951.
|
14 |
WANG Y X, SHANG K H, HE W, et al. Magnesium⁃doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for lithium⁃ion battery cathode with enhanced cycling stability and rate capability[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 13014⁃13021.
|
15 |
XIE Z Q, ZHAO N, WANG C Q, et al. A simple and efficient strategy to construct Li⁃rich layered materials with surface layered/spinel heterostructures[J]. Journal of Alloys and Compounds, 2023, 937: 168293.
|
16 |
WANG N, CHEN Y L, YIN J X, et al. Systematic study of the effects of lithium deficiencies on the crystal structure and electrochemical performance of Li⁃rich materials[J]. Journal of Alloys and Compounds, 2022, 900: 163549.
|
17 |
DONG S D, ZHOU Y, HAI C X, et al. Understanding electrochemical performance improvement with Nb doping in lithium⁃rich manganese⁃based cathode materials[J]. Journal of Power Sources, 2020, 462: 228185.
|
18 |
HUANG C, WANG Z J, WANG H, et al. Mg2+ doping into Li sites to improve anionic redox reversibility and thermal stability of lithium⁃rich manganese⁃based oxides cathode[J]. Materials Today Energy, 2022, 29: 101116.
|
19 |
ZHANG S D, LIU Y, QI M, et al. Localized surface doping for improved stability of high energy cathode materials[J]. Acta Physico⁃Chimica Sinica, 2021, 37(11): 2011007.
|
20 |
LIU C, ZHANG S, FENG Y Y, et al. Preparation and characterization of the Li1.12K0.05Mn0.57Ni0.24Nb0.02O2 cathode material with highly improved rate cycling performance for lithium ion batteries[J]. Nanoscale, 2021, 14(1): 65⁃75.
|