1 |
刘晓艺, 李秀萍, 赵荣祥. Ni⁃MoO3/SG的制备及其催化氧化脱硫性能[J]. 石油炼制与化工, 2022, 53(2): 53⁃62.
|
|
LIU X Y, LI X P, ZHAO R X. Preparation of Ni⁃MoO3/SG and its catalytic performance of oxidative desulfurization[J]. China Petroleum Processing Petrochemical Technology, 2022, 53(2):53⁃62.
|
2 |
王韵淇, 李珊珊, 汤梦蝶, 等. OA⁃ ZnCl2/SG 催化剂的合成及其氧化脱硫性能[J]. 辽宁石油化工大学学报, 2022, 42(4): 11⁃16.
|
|
WANG Y Q, LI S S, TANG M D, et al. Synthesis of OA⁃ZnCl2/SG catalyst and its oxidative desulfurization performance[J]. Journal of Liaoning Petrochemical University, 2022, 42(4): 11⁃16.
|
3 |
周隆昌, 刘汉林, 李秀萍, 等. 直接煅烧法制备二氧化钛及其氧化脱硫性能[J]. 辽宁石油化工大学学报, 2021, 41(5): 17⁃22.
|
|
ZHOU L C, LIU H L, LI X P, et al. Preparation of titanium dioxide by direct calcination and its oxidative desulfurization performance[J]. Journal of Liaoning Petrochemical University, 2021, 41(5): 17⁃22.
|
4 |
宁浩宇, 朱忠朋, 郑伟平, 等. 溶剂分子烃基结构对噻吩催化氧化的影响[J]. 石油炼制与化工, 2023, 54(11): 41⁃46.
|
|
NING H Y, ZHU Z P, ZHENG W P, et al. Effect of alkyl structure in solvent molecules on catalytic oxidation of thiophene[J]. China Petroleum Processing Petrochemical Technology, 2023, 54(11): 41⁃46.
|
5 |
商宇桐, 杨丽娜, 管景国, 等. 光催化氧化脱硫催化剂研究进展[J].石油化工高等学校学报, 2020, 33(2):17⁃22.
|
|
SHANG Y T, YANG L N, GUAN J G, et al. Progress in photocatalytic oxidation desulfurization catalysts[J]. Journal of Petrochemical Universities, 2020, 33(2): 17⁃22.
|
6 |
马锐, 宋永一, 张庆军, 等. 船用残渣型燃料油脱硫技术进展[J].石油化工高等学校学报, 2021, 34(1):15⁃21.
|
|
MA R, SONG Y Y, ZHANG Q J, et al. Progress of residual marine fuel desulfurization technology[J].Journal of Petrochemical Universities, 2021, 34(1):15⁃21.
|
7 |
LIU Y, BAI J, SONG Y, et al. Oxygen vacancy engineering of molybdenum oxide nanobelts by fe ion intercalation for aerobic oxidative desulfurization[J].ACS Applied Nano Materials, 2021, 4(12): 13379⁃13387.
|
8 |
LÜ H, REN W, LIAO W, et al. Aerobic oxidative desulfurization of model diesel using a B⁃type Anderson catalyst [(C18H37)2N(CH3)2]3Co(OH)6Mo6O18·3H2O[J]. Applied Catalysis B: Environmental, 2013, 138: 79⁃83.
|
9 |
LÜ H, ZHANG Y, JIANG Z, et al. Aerobic oxidative desulfurization of benzothiophene, dibenzothiophene and 4, 6⁃dimethyldibenzothiophene using an Anderson⁃type catalyst [(C18H37)2N(CH3)2]5[IMo6O24][J]. Green Chemistry, 2010, 12(11): 1954⁃1958.
|
10 |
ZOU Y, WANG C, CHEN H, et al. Scalable and facile synthesis of V2O5 nanoparticles via ball milling for improved aerobic oxidative desulfurization[J]. Green Energy & Environment, 2021, 6(2): 169⁃175.
|
11 |
ZHANG M, LIAO W, WEI Y, et al. Aerobic oxidative desulfurization by nanoporous tungsten oxide with oxygen defects[J]. ACS Applied Nano Materials, 2021, 4(2): 1085⁃1093.
|
12 |
GU Q, WEN G, DING Y, et al. Reduced graphene oxide: A metal⁃free catalyst for aerobic oxidative desulfurization[J]. Green Chemistry, 2017, 19(4): 1175⁃1181.
|
13 |
YAO X, WANG C, LIU H, et al. Immobilizing highly catalytically molybdenum oxide nanoparticles on graphene⁃analogous BN: Stable heterogeneous catalysts with enhanced aerobic oxidative desulfurization performance[J]. Industrial & Engineering Chemistry Research, 2018, 58(2): 863⁃871.
|
14 |
WU P, ZHU W, DAI B, et al. Copper nanoparticles advance electron mobility of graphene⁃like boron nitride for enhanced aerobic oxidative desulfurization[J]. Chemical Engineering Journal, 2016, 301: 123⁃131.
|
15 |
WU P, ZHU W, CHAO Y, et al. A template⁃free solvent⁃mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization[J]. Chemical Communications, 2016, 52(1): 144⁃147.
|
16 |
VALLÉS⁃GARCÍA C, SANTIAGO⁃PORTILLO A, ÁLVARO M, et al. MIL⁃101 (Cr)⁃NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes[J]. Applied Catalysis A: General, 2020, 590: 117340.
|
17 |
GÓMEZ⁃PARICIO A, SANTIAGO⁃PORTILLO A, NAVALÓN S, et al. MIL⁃101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes[J]. Green Chemistry, 2016, 18(2): 508⁃515.
|
18 |
ZHANG Q, ZHANG J, YANG H, et al. Efficient aerobic oxidative desulfurization over Co-Mo-O bimetallic oxide catalysts[J]. Catalysis Science & Technology, 2019, 9(11): 2915⁃2922.
|
19 |
SONG Y, BAI J, JIANG S, et al. Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization[J]. Fuel, 2021, 306: 121751.
|
20 |
SHI Y, LIU G, ZHANG B, et al. Oxidation of refractory sulfur compounds with molecular oxygen over a Ce-Mo-O catalyst[J]. Green Chemistry, 2016, 18(19): 5273⁃5279.
|
21 |
BAI J, SONG Y, WANG C, et al. Engineering the electronic structure of Mo Sites in Mn-Mo-O mixed⁃metal oxides for efficient aerobic oxidative desulfurization[J]. Energy & Fuels, 2021, 35(15): 12310⁃12318.
|
22 |
KUMAR M, LEE Y H, KIM M S, et al. Morphology⁃controlled synthesis of 3D flower⁃like NiWO4 microstructure via surfactant⁃free wet chemical method[J]. Journal of Alloys and Compounds, 2018, 753: 791⁃798.
|
23 |
YU M Q, JIANG L X, YANG H G. Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for electrocatalytic oxygen evolution[J]. Chemical Communications, 2015, 51(76): 14361⁃14364.
|
24 |
GUO J, CHU L, WANG L, et al. Self⁃templated fabrication of CoMoO4⁃Co3O4 hollow nanocages for efficient aerobic oxidative desulfurization[J]. Applied Surface Science, 2022, 579: 152251.
|
25 |
LIU X Y, LI X P, ZHAO R X. Ce2(MoO4)3 as an efficient catalyst for aerobic oxidative desulfurization of fuels[J]. Petroleum Science, 2022, 19(2): 861⁃869.
|
26 |
TSAY J, FANG T. Effects of molar ratio of citric acid to cations and of pH value on the formation and thermal⁃decomposition behavior of barium titanium citrate[J]. Journal of the American Ceramic Society, 1999, 82(6): 1409⁃1415.
|
27 |
De MOURA A P, De OLIVEIRA L H, PEREIRA P F S, et al. Photoluminescent properties of CoMoO4 nanorods quickly synthesized and annealed in a domestic microwave oven[J]. Advances in Chemical Engineering and Science, 2012, 2(4): 465⁃473.
|
28 |
UMAPATHY V, NEERAJA P. Sol⁃gel synthesis and characterizations of CoMoO4 nanoparticles: An efficient photocatalytic degradation of 4⁃chlorophenol[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(3): 2960⁃2966.
|
29 |
CHEN Y, YANG W, GAO S, et al. Synthesis of Bi2MoO6 nanosheets with rich oxygen vacancies by postsynthesis etching treatment for enhanced photocatalytic performance[J]. ACS Applied Nano Materials, 2018, 1(7): 3565⁃3578.
|
30 |
ESEVA E, AKOPYAN A, SCHEPINA A, et al. Deep aerobic oxidative desulfurization of model fuel by Anderson⁃type polyoxometalate catalysts[J]. Catalysis Communications, 2021, 149: 106256.
|
31 |
AKBARI A, OMIDKHAH M, DARIAN J T. Investigation of process variables and intensification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst[J]. Ultrasonics Sonochemistry, 2014, 21(2): 692⁃705.
|
32 |
OTSUKI S, NONAKA T, TAKASHIMA N, et al. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy & Fuels, 2000, 14(6): 1232⁃1239.
|
33 |
SHI Y, LIU G, ZHANG B, et al. Oxidation of refractory sulfur compounds with molecular oxygen over a Ce-Mo-O catalyst[J]. Green Chemistry, 2016, 18(19): 5273⁃5279.
|
34 |
XIE C, WANG Y, HU K, et al. In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO 4 2 - intercalated layered double hydroxides for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(1): 87⁃91.
|
35 |
ZHANG Q, ZHANG J, YANG H, et al. Efficient aerobic oxidative desulfurization over Co-Mo-O bimetallic oxide catalysts[J]. Catalysis Science & Technology, 2019, 9(11): 2915⁃2922.
|