1 |
陈光进,孙长宇,马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2007.
|
2 |
谢应明, 梁德青, 郭开华, 等. 气体水合物蓄冷技术研究现状与展望[J]. 暖通空调, 2004, 34(9): 25⁃28.
|
3 |
樊拴狮, 程宏远, 陈光进, 等. 水合物法分离技术研究[J]. 现代化工, 1999, 19(2): 11⁃14.
|
4 |
Song C, Mujahid M, Li R, et al. Pebax/MWCNTs⁃NH2 mixed matrix membranes for enhanced CO2/N2 separation[J]. Greenhouse Gases: Science and Technology, 2020, 10(2): 408⁃420.
|
5 |
Sun Q, Zhao Y, Liu A, et al. Continuous separation of CH4/N2 mixture via hydrates formation in the presence of TBAB[J]. Chemical Engineering and Processing: Process Intensification, 2015, 95: 284⁃288.
|
6 |
Zhong D, Ye Y, Yang C, et al. Experimental investigation of methane separation from low⁃concentration coal mine gas (CH4/N2/O2) by tetra⁃n⁃butyl ammonium bromide semiclathrate hydrate crystallization[J]. Industrial & Engineering Chemistry Research, 2012, 51(45): 14806⁃14813.
|
7 |
Hashimoto H, Yamaguchi T, Kinoshita T, et al. Gas separation of flue gas by tetra⁃n⁃butylammonium bromide hydrates under moderate pressure conditions[J]. Energy, 2017, 129: 292⁃298.
|
8 |
薛倩, 王晓霖, 李遵照, 等. 水合物利用技术应用进展[J]. 化工进展, 2020, 40(2): 722⁃735.
|
9 |
Zhou S D, Jiang K, Zhao Y L, et al. Experimental investigation of CO2 hydrate formation in the water containing graphite nanoparticles and tetra⁃n⁃butyl ammonium bromide[J]. Journal of Chemical and Engineering Data, 2018, 63(2): 389⁃394.
|
10 |
周麟晨, 孙志高, 陆玲, 等. 有机相变乳液中HCFC⁃141b 水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674⁃1681.
|
11 |
徐政涛, 谢应明, 孙嘉颖, 等. 水合物法海水淡化技术研究进展及展望 [J]. 热能动力工程, 2020, 35(7):1⁃11.
|
12 |
刘妮, 李菊, 陈伟军, 等. 机械强化制备二氧化碳水合物的特性研究[J]. 中国电机工程学报, 2011, 31(2): 51⁃54.
|
13 |
白净, 李凌乾, 刘风莉, 等. 机械扰动强化气体水合物快速生成研究进展[J]. 化工进展, 2018, 37(1): 60⁃67.
|
14 |
Arjmandi M, Antonin C, Tohidi B. Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi⁃clathrate hydrates of tetrabutyl ammonium bromide[J]. Journal of Chemical and Engineering Data, 2007, 52(6): 2153⁃2158.
|
15 |
Li X S, Xu C G, Chen Z Y, et al. Hydrate⁃based pre⁃combustion carbon dioxide capture process in the system with tetra⁃n⁃butyl ammonium bromide solution in the presence of cyclopentane[J]. Energy, 2011, 36(3): 1394⁃1403.
|
16 |
Park S S, Lee S B, Kim N J. Effect of multi⁃walled carbon nanotubes on methane hydrate formation[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(4): 551⁃555.
|
17 |
Fedele L, Colla L, Bobbo S. Viscosity and thermal conductivity measurements of water⁃based nanofluids containing titanium oxide nanoparticles[J]. International Journal of Refrigeration, 2012, 35(5): 1359⁃1366.
|
18 |
Arjang S, Manteghian M, Mohammadi A. Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa[J]. Chemical Engineering Research and Design, 2013, 91(6): 1050⁃1054.
|
19 |
Rahmati⁃Abkenar M, Manteghian M, Pahlavanzadeh H. Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles[J]. Chemical Engineering Research and Design, 2017, 120: 325⁃332.
|
20 |
Pahlavanzadeh H, Rezaei S, Khanlarkhani M, et al. Kinetic study of methane hydrate formation in the presence of copper nanoparticles and CTAB[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 803⁃810.
|
21 |
刘妮, 张亚楠, 柳秀婷, 等. 纳米流体中CO2水合物生成特性实验研究[J]. 制冷学报, 2015, 36(2): 41⁃45.
|
22 |
Said S, Govindaraj V, Herri J M, et al. A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: Application to the CO2 capture process[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 95⁃108.
|
23 |
Govindaraj V, Mech D, Pandey G, et al. Kinetics of methane hydrate formation in the presence of activated carbon and nano⁃silica suspensions in pure water[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 810⁃818.
|
24 |
Li A, Luo D, Jiang L, et al. Experimental study on CO2 hydrate formation in the presence of TiO2, SiO2, MWNTs nanoparticles[J]. Separation Science and Technology, 2018, 54(15): 2498⁃2506.
|
25 |
Firoozabadi S R, Bonyadi M. A comparative study on the effects of Fe3O4 nanofluid, SDS and CTAB aqueous solutions on the CO2 hydrate formation[J]. Journal of Molecular Liquids, 2020, 300: 112251.
|
26 |
Pahlavanzadeh H, Khanlarkhani M, Rezaei S, et al. Experimental and modelling studies on the effects of nanofluids (SiO2, Al2O3, and CuO) and surfactants (SDS and CTAB) on CH4 and CO2 clathrate hydrates formation[J]. Fuel, 2019, 253: 1392⁃1405.
|
27 |
Liu G Q, Wang F, Luo S J, et al. Enhanced methane hydrate formation with SDS⁃coated Fe3O4 nanoparticles as promoters[J]. Journal of Molecular Liquids, 2017, 230: 315⁃321.
|
28 |
Nesterov A N, Reshetnikov A M, Manakov A Y, et al. Promotion and inhibition of gas hydrate formation by oxide powders[J]. Journal of Molecular Liquids, 2015, 204: 118⁃125.
|
29 |
孙慧翠, 王韧, 徐显广, 等. 亲水纳米 SiO2 对 CH4水合物形成的影响[J]. 中国石油大学学报 (自然科学版), 2018, 42(3): 81⁃87.
|
30 |
刘庭崧,刘妮,洪春芳.金属纳米颗粒对水合物的导热影响[J].原子与分子物理学报,2021,38(6):77⁃82.
|
31 |
Fukumoto K, Tobe J, Ohmura R, et al. Hydrate formation using water spraying in a hydrophobic gas: A preliminary study[J]. AIChE Journal, 2001, 47(8): 1899.
|
32 |
Takahashi M, Kawamura T, Yamamoto Y, et al. Effect of shrinking microbubble on gas hydrate formation[J]. The Journal of Physical Chemistry B, 2003, 107(10): 2171⁃2173.
|
33 |
Zhong Y, Rogers R. Surfactant effects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175⁃4187.
|
34 |
王昭, 李丽, 陈小兵, 等. 微波在制备纳米金属及其化合物中的应用进展[J]. 辽宁石油化工大学学报, 2006, 26(4): 13⁃14.
|
35 |
翟郑佳, 李国龙, 朱恒宣, 等. 磁场对 Fe3O4⁃水纳米流体传热特性的影响[J]. 辽宁石油化工大学学报, 2020, 40(2): 22⁃29.
|
36 |
申小冬, 邵子越, 唐宇航, 等. 羧甲基纤维素纳对CO2水合物动力学形成规律的影响[J]. 天然气工业,2021,41(10):154⁃160.
|
37 |
田德珍, 刘道平, 杨亮, 等. 金属纤维悬浮液中天然气水合物生成特性实验研究[J].能源研究与信息,2021,37(4):222⁃228.
|
38 |
张永超, 刘昌岭, 刘乐乐, 等. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3): 193⁃202.
|
39 |
Zhang Y, Liu L, Wang D, et al. Application of low⁃field nuclear magnetic resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media [J]. Energy & Fuels, 2021, 35(3): 2174⁃2182.
|
40 |
Wang F, Song Y M, Liu G Q, et al. Rapid methane hydrate formation promoted by Ag&SDS⁃coated nanospheres for energy storage[J]. Applied Energy, 2018, 213: 227⁃234.
|
41 |
Mohammadi A, Manteghian M, Haghtalab A, et al. Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS[J]. Chemical Engineering Journal, 2014, 237: 387⁃395.
|
42 |
刘真真, 杨亮, 刘道平, 等. 金属颗粒与纤维悬浮液中天然气水合物生成实验研究[J]. 上海理工大学学报, 2020, 42(3): 232⁃239.
|
43 |
Mohammadi M, Haghtalab A, Fakhroueian Z. Experimental study and thermodynamic modeling of CO2 gas hydrate formation in presence of zinc oxide nanoparticles[J]. The Journal of Chemical Thermodynamics, 2016, 96: 24⁃33.
|
44 |
Wu Y, Tang T, Shi L, et al. Rapid hydrate⁃based methane storage promoted by bilayer surfactant⁃coated Fe3O4 nanoparticles under a magnetic field[J]. Fuel, 2021, 303: 121248.
|