| 1 | 
																						 
											 Liu J W, Xu Y N, Qin C Y, et al. Simple fluorene oxadiazole⁃based Ir(Ⅲ) complexes with AIPE properties: Synthesis, explosive detection and electroluminescence studies[J]. Dalton Trans., 2019, 48(35): 13305⁃13314.
											 											 | 
										
																													
																						| 2 | 
																						 
											 Yang T, Feng C, Zhao P, et al. Fluorescent electronic tongue supported with water⁃borne polyurethane for the discrimination of nitroaromatics in aqueous solution[J]. J. Mater. Chem. C, 2020, 8(7): 2500⁃2506.
											 											 | 
										
																													
																						| 3 | 
																						 
											 Che W, Li G, Liu X, et al. Selective sensing of 2,4,6⁃trinitrophenol (TNP) in aqueous media with ''aggregation⁃induced emission enhancement'' (AIEE)⁃active iridium(Ⅲ) complexes[J]. Chem. Commun., 2018, 54(14): 1730⁃1733.
											 											 | 
										
																													
																						| 4 | 
																						 
											 Wen L L, Hou X G, Shan G G, et al. Rational molecular design of aggregation⁃induced emission cationic Ir(Ⅲ) phosphors achieving supersensitive and selective detection of nitroaromatic explosives[J]. J. Mater. Chem. C, 2017, 5(41): 10847⁃10854.
											 											 | 
										
																													
																						| 5 | 
																						 
											 Abuzalat O, Wong D, Park S S, et al. Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection[J]. Nanoscale, 2020, 12(25): 13523⁃13530.
											 											 | 
										
																													
																						| 6 | 
																						 
											 Alam P, Kaur G, Kachwal V, et al. Highly sensitive explosive sensing by ''aggregation induced phosphorescence'' active cyclometalated iridium(Ⅲ) complexes[J]. J. Mater. Chem. C, 2015, 3(21): 5450⁃5456.
											 											 | 
										
																													
																						| 7 | 
																						 
											 Topuz F, Uyar T. Atomic layer deposition of palladium nanoparticles on a functional electrospun poly⁃cyclodextrin nanoweb as a flexible and reusable heterogeneous nanocatalyst for the reduction of nitroaromatic compounds[J]. Nanoscale Advances, 2019, 1(10): 4082⁃4089.
											 											 | 
										
																													
																						| 8 | 
																						 
											 Yang H, Li H, Zhou M, et al. A relationship between membrane permeation and partitioning of nitroaromatic explosives and their functional groups. A computational study[J]. Phys. Chem. Chem. Phys., 2020, 22(16): 8791⁃8799.
											 											 | 
										
																													
																						| 9 | 
																						 
											 Qin J H, Huang Y D, Shi M Y, et al. Aqueous⁃phase detection of antibiotics and nitroaromatic explosives by an alkali⁃resistant Zn⁃MOF directed by an ionic liquid[J]. RSC Adv., 2020, 10(3): 1439⁃1446.
											 											 | 
										
																													
																						| 10 | 
																						 
											 Di L, Xia Z, Li J, et al. Selective sensing and visualization of pesticides by ABW⁃type metal⁃organic framework based luminescent sensors[J]. RSC Adv., 2019, 9(66): 38469⁃38476.
											 											 | 
										
																													
																						| 11 | 
																						 
											 邢杨, 王浩, 黄丽, 等. 富电子LMOFs对有机农药的高效荧光检测[J]. 精细化工, 2020, 37(4): 682⁃688.
											 											 | 
										
																													
																						| 12 | 
																						 
											 Yan B. Luminescence response mode and chemical sensing mechanism for lanthanide⁃functionalized metal⁃organic framework hybrids[J]. Inorg. Chem. Front., 2021, 8(1): 201⁃233.
											 											 | 
										
																													
																						| 13 | 
																						 
											 狄玲, 陈放, 付荣荣, 等. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830⁃3838.
											 											 | 
										
																													
																						| 14 | 
																						 
											 Di L, Xia Z, Wang H, et al. Switchable and adjustable AIE activity of Pt(Ⅱ) complexes achieving swift⁃responding and highly sensitive oxygen sensing[J]. Sens. Actuators B, 2021, 326: 128987.
											 											 | 
										
																													
																						| 15 | 
																						 
											 Deng P, Pei Y, Liu M, et al. A rapid ''on⁃off⁃on'' mitochondria⁃targeted phosphorescent probe for selective and consecutive detection of Cu2+ and cysteine in live cells and zebrafish[J]. RSC Adv., 2021, 11(13): 7610⁃7620.
											 											 | 
										
																													
																						| 16 | 
																						 
											 Di L, Xing Y, Wang X, et al. The influence of molecular structure on collision radius for optical sensing of molecular oxygen based on cyclometalated Ir(Ⅲ) complexes[J]. RSC Adv., 2018, 8(71): 41040⁃41047.
											 											 | 
										
																													
																						| 17 | 
																						 
											 郑宇, 戴光阔, 于潇贺, 等. 铂配合物对4⁃硝基甲苯的高效荧光检测[J]. 辽宁石油化工大学学报, 2020, 40(1): 15⁃19.
											 											 | 
										
																													
																						| 18 | 
																						 
											 Xing Y, Wang L, Liu C, et al. Effects of fluorine and phenyl substituents on oxygen sensitivity and photostability of cyclometalated platinum(II) complexes[J]. Sens. Actuators B, 2020, 304: 127378.
											 											 | 
										
																													
																						| 19 | 
																						 
											 狄玲, 操青松, 李声笛, 等. 含三苯胺铱(Ⅲ)配合物对硝基芳香化合物的高效发光检测[J]. 精细化工, 2020, 37(7): 1408⁃1413.
											 											 | 
										
																													
																						| 20 | 
																						 
											 Sathish V, Ramdass A, Velayudham M, et al. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives[J]. Dalton Trans., 2017, 46(48): 16738⁃16769.
											 											 | 
										
																													
																						| 21 | 
																						 
											 Zhao K Y, Mao H T, Wen L L, et al. A simple strategy to achieve remarkable mechanochromism of cationic Ir(Ⅲ) phosphors through subtle ligand modification[J]. J. Mater. Chem. C, 2018, 6(43): 11686⁃11693.
											 											 | 
										
																													
																						| 22 | 
																						 
											 Xing Y, Qiao C, Li X, et al. The dependence of oxygen sensitivity on molecular structures of Ir(Ⅲ) complexes and application for photostable and reversible luminescent oxygen sensing[J]. RSC Adv., 2019, 9(27): 15370⁃15380.
											 											 | 
										
																													
																						| 23 | 
																						 
											 Xing Y, Liu C, Song X, et al. Photostable trifluoromethyl⁃substituted platinum(Ⅱ) emitters for continuous monitoring of molecular oxygen[J]. J. Mater. Chem. C, 2015, 3(10): 2166⁃2174.
											 											 | 
										
																													
																						| 24 | 
																						 
											 Xing Y, Liu C, Xiu J H, et al. Photostable fluorophenyl⁃substituted cyclometalated platinum(Ⅱ) emitters for monitoring of molecular oxygen in real time[J]. Inorg. Chem., 2015, 54(16): 7783⁃7790.
											 											 | 
										
																													
																						| 25 | 
																						 
											 Dai Y, Zhou H, Song X D, et al. Two (5,5)⁃connected isomeric frameworks as highly selective and sensitive photoluminescent probes of nitroaromatics[J]. CrystEngComm, 2017, 19(20): 2786⁃2794.
											 											 | 
										
																													
																						| 26 | 
																						 
											 Di L, Zhang J J, Liu S Q, et al. Two dynamic abw⁃type metal organic frameworks built of pentacarboxylate and Zn2+ as photoluminescent probes of nitroaromatics[J]. Cryst. Growth Des., 2016, 16(8): 4539⁃4546.
											 											 | 
										
																													
																						| 27 | 
																						 
											 Williams L, Mukherjee A, Dasgupta A, et al. Monitoring the role of site chemistry on the formation energy of perovskites via deep learning analysis of Hirshfeld surfaces[J]. J. Mater. Chem. C, 2021, 9(34): 11153⁃11162.
											 											 |