辽宁石油化工大学学报 ›› 2022, Vol. 42 ›› Issue (5): 1-12.DOI: 10.3969/j.issn.1672-6952.2022.05.001
收稿日期:
2022-04-22
修回日期:
2022-05-10
出版日期:
2022-10-25
发布日期:
2022-11-18
通讯作者:
周锦霞
作者简介:
郭启昌(1995⁃),男,硕士研究生,从事催化化学研究;E⁃mail: 497370862@qq.com。
基金资助:
Qichang Guo(), Jingbo Mao, Chunyu Liu, Yufeng Jia, Jinxia Zhou()
Received:
2022-04-22
Revised:
2022-05-10
Published:
2022-10-25
Online:
2022-11-18
Contact:
Jinxia Zhou
摘要:
愈创木酚常被用作木质素(自然界储量最丰富的可再生芳香族资源)催化研究的模型化合物。 然而,由于其结构复杂存在多种反应可能性,催化愈创木酚加氢脱氧反应不易获得良好的活性和选择性。迄今为止,研究人员为寻求突破,在催化剂开发和反应工艺优化方面做了大量工作。 综述了近年来用于愈创木酚加氢脱氧反应的过渡金属催化剂和贵金属催化剂的研究进展,并对反应路径和影响催化性能的因素进行了讨论,重点关注了愈创木酚经过CAR-O断裂和芳环饱和转化为苯酚或环己醇的研究。 此外,还对今后催化剂改进和反应工艺探索的研究方向进行了展望。
中图分类号:
郭启昌, 毛璟博, 刘春雨, 贾玉峰, 周锦霞. 木质素模型化合物愈创木酚加氢脱氧反应研究进展[J]. 辽宁石油化工大学学报, 2022, 42(5): 1-12.
Qichang Guo, Jingbo Mao, Chunyu Liu, Yufeng Jia, Jinxia Zhou. Hydrodeoxygenation of Guaiacol as a Model Compound of Lignin: A Review[J]. Journal of Liaoning Petrochemical University, 2022, 42(5): 1-12.
序号 | 催化剂 | 催化剂 还原条件 | 反应条件 | 愈创木酚转化率/% | 主要产物 收率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
T/°C | t/h | p(H2)/MPa | 溶剂 | ||||||
1 | Ni/CK⁃800 | 200 | 2 | 2.00 | 十二烷 | 100.0 | 1⁃甲基⁃1,2⁃己二醇(73.0) | [ | |
2 | Ni/TiO2⁃R | H2/Ar/400 ℃ | 300 | 2 | 4.00 | 正十烷 | 89.1 | 2⁃甲氧基环己醇(51.6) | [ |
3 | Ni/TiO2⁃A | H2/Ar/400 ℃ | 300 | 2 | 4.00 | 正十烷 | 31.6 | 苯酚(25.6) | [ |
4 | Ni/PANI⁃AC | H2/N2/350 ℃ | 250 | 4 | 5.00 | H2O | 18.0 | 邻苯二酚(2.6) | [ |
5 | NP⁃NiMnO2 | 150 | 12 | 0.50 | H2O | 100.0 | 环己醇(75.0) | [ | |
6 | Ni/ZrO2⁃CeO2 | H2/450 ℃ | 220 | 3 | 2.00 | 100.0 | 环己醇(85.0) | [ | |
7 | Ni/Al2O3 | 300 | 4 | 4.00 | 正十烷 | 100.0 | 环己烷(80.0) | [ | |
8 | Ni/TiO2⁃A | H2/400 ℃ | 300 | 4 | 4.00 | 正十烷 | 85.0 | 苯酚(59.5) | [ |
9 | Ni/SiO2⁃TiO2 | H2/450 ℃ | 220 | 3 | 2.00 | 正十烷 | 100.0 | 环己烷(92.0) | [ |
10 | NP⁃Ni Alloy | 180 | 4 | 2.00 | H2O | 99.7 | 环己醇(89.8) | [ | |
11 | Ni/RH⁃API | N2/H2/500 ℃ | 350 | 1 | 0.10 | 100.0 | 苯酚(61.5) | [ | |
12 | Ni2P/ZSM⁃5 | H2/650 ℃ | 220 | 2 | 4.00 | 十氢萘 | 78.0 | 环己烷(60.0) | [ |
13a | Ni2P/SiO2 | H2/450 ℃ | 350 | 0.10 | 72.0 | 苯(52.0) | [ | ||
14a | Ni2P/γ⁃Al2O3 | H2/Ar | 300 | 0.10 | 96.9 | 1,2⁃二甲氧基苯(57.1) | [ | ||
15 | Ni2P/HZSM⁃5 | H2/600 ℃ | 300 | 5 | 3.00 | 十二烷 | 98.0 | 环己烷(78.8) | [ |
16 | NiB/SiO2⁃Al2O3 | H2/460 ℃ | 260 | 3 | 5.00 | 十氢萘+H2O | 98.7 | 环己醇(55.0) | [ |
17 | NiCo/G | H2/300 ℃ | 300 | 4 | 5.00 | 十二烷 | 75.0 | 环己醇(37.5) | [ |
18 | NiCo/γ⁃Al2O3 | H2 | 200 | 8 | 5.00 | H2O | 96.1 | 环己醇(68.1) | [ |
19b | NiCo/CNT | H2/500 ℃ | 220 | 2 | 异丙醇 | 100.0 | 环己醇(94.0) | [ | |
20 | NiMo/ZrO2⁃Al2O3 | H2/300 ℃ | 330 | 10 | 3.00 | 四氢萘 | 100.0 | 苯酚(45.3) | [ |
21a | NiMoW⁃磺化 | H2/H2S/400 ℃ | 400 | 2.80 | 99.6 | 邻苯二酚(50.0) | [ | ||
22 | NiMoPS/PILC | H2/500 ℃ | 350 | 6 | 2.00 | 100.0 | 苯酚(77.0) | [ | |
23a | NiMo/SiO2 | H2/450 ℃ | 410 | 0.10 | 99.0 | 苯(64.0) | [ | ||
24a | NiMo/SBA⁃15 | H2/500 ℃ | 300 | 85.0 | 苯酚(28.9) | [ | |||
25 | NiMoS2/CMK⁃3 | H2/450 ℃ | 300 | 6 | 5.00 | 十二烷 | 100.0 | 苯酚(31.5)、环己烷(35.7) | [ |
26 | FeNi/ZrO2 | H2/500 ℃ | 300 | 8 | 4.00 | 辛烷 | 100.0 | 环己烷(89.4) | [ |
27a | Ni5Fe1/CNT | H2/N2/400 ℃ | 300 | 3.00 | 100.0 | 环己烷(99.8) | [ | ||
28a | Ni1Fe5/CNT | H2/N2/400 ℃ | 300 | 3.00 | 50.0 | 苯酚(42.0) | [ | ||
29 | NiCu/Ti⁃MCM⁃41 | H2/He/550 ℃ | 260 | 6 | 10.00 | 庚烷 | 74.2 | 环己烷(36.2) | [ |
30a | NiGa/SiO2 | 300 | 0.10 | 98.4 | 苯酚(71.0) | [ | |||
31 | Ni⁃Re/SiO2 | H2/N2/350 ℃ | 250 | 5 | 3.00 | 十二烷 | 100.0 | 环己烷(95.0) | [ |
32a | NiReO x /ZrO2 | 350 ℃(in⁃situ) | 350 | 0.10 | 51.8 | 苯(30.5) | [ | ||
33 | NiZr⁃I/CMK⁃3 | H2/450 ℃ | 300 | 8 | 5.00 | 十六烷 | 100.0 | 环己醇(47.9) | [ |
34c | NiCeO2/rGO | H2/N2/350 ℃ | 300 | 4 | H2O | 23.0 | 邻苯二酚(9.2) | [ | |
35a | NiW/TiO2 | H2S/H2/400 ℃ | 320 | 5.50 | 十六烷 | 100.0 | 环己烷(65.0) | [ |
表1 用于愈创木酚加氢脱氧反应的Ni基催化剂
序号 | 催化剂 | 催化剂 还原条件 | 反应条件 | 愈创木酚转化率/% | 主要产物 收率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
T/°C | t/h | p(H2)/MPa | 溶剂 | ||||||
1 | Ni/CK⁃800 | 200 | 2 | 2.00 | 十二烷 | 100.0 | 1⁃甲基⁃1,2⁃己二醇(73.0) | [ | |
2 | Ni/TiO2⁃R | H2/Ar/400 ℃ | 300 | 2 | 4.00 | 正十烷 | 89.1 | 2⁃甲氧基环己醇(51.6) | [ |
3 | Ni/TiO2⁃A | H2/Ar/400 ℃ | 300 | 2 | 4.00 | 正十烷 | 31.6 | 苯酚(25.6) | [ |
4 | Ni/PANI⁃AC | H2/N2/350 ℃ | 250 | 4 | 5.00 | H2O | 18.0 | 邻苯二酚(2.6) | [ |
5 | NP⁃NiMnO2 | 150 | 12 | 0.50 | H2O | 100.0 | 环己醇(75.0) | [ | |
6 | Ni/ZrO2⁃CeO2 | H2/450 ℃ | 220 | 3 | 2.00 | 100.0 | 环己醇(85.0) | [ | |
7 | Ni/Al2O3 | 300 | 4 | 4.00 | 正十烷 | 100.0 | 环己烷(80.0) | [ | |
8 | Ni/TiO2⁃A | H2/400 ℃ | 300 | 4 | 4.00 | 正十烷 | 85.0 | 苯酚(59.5) | [ |
9 | Ni/SiO2⁃TiO2 | H2/450 ℃ | 220 | 3 | 2.00 | 正十烷 | 100.0 | 环己烷(92.0) | [ |
10 | NP⁃Ni Alloy | 180 | 4 | 2.00 | H2O | 99.7 | 环己醇(89.8) | [ | |
11 | Ni/RH⁃API | N2/H2/500 ℃ | 350 | 1 | 0.10 | 100.0 | 苯酚(61.5) | [ | |
12 | Ni2P/ZSM⁃5 | H2/650 ℃ | 220 | 2 | 4.00 | 十氢萘 | 78.0 | 环己烷(60.0) | [ |
13a | Ni2P/SiO2 | H2/450 ℃ | 350 | 0.10 | 72.0 | 苯(52.0) | [ | ||
14a | Ni2P/γ⁃Al2O3 | H2/Ar | 300 | 0.10 | 96.9 | 1,2⁃二甲氧基苯(57.1) | [ | ||
15 | Ni2P/HZSM⁃5 | H2/600 ℃ | 300 | 5 | 3.00 | 十二烷 | 98.0 | 环己烷(78.8) | [ |
16 | NiB/SiO2⁃Al2O3 | H2/460 ℃ | 260 | 3 | 5.00 | 十氢萘+H2O | 98.7 | 环己醇(55.0) | [ |
17 | NiCo/G | H2/300 ℃ | 300 | 4 | 5.00 | 十二烷 | 75.0 | 环己醇(37.5) | [ |
18 | NiCo/γ⁃Al2O3 | H2 | 200 | 8 | 5.00 | H2O | 96.1 | 环己醇(68.1) | [ |
19b | NiCo/CNT | H2/500 ℃ | 220 | 2 | 异丙醇 | 100.0 | 环己醇(94.0) | [ | |
20 | NiMo/ZrO2⁃Al2O3 | H2/300 ℃ | 330 | 10 | 3.00 | 四氢萘 | 100.0 | 苯酚(45.3) | [ |
21a | NiMoW⁃磺化 | H2/H2S/400 ℃ | 400 | 2.80 | 99.6 | 邻苯二酚(50.0) | [ | ||
22 | NiMoPS/PILC | H2/500 ℃ | 350 | 6 | 2.00 | 100.0 | 苯酚(77.0) | [ | |
23a | NiMo/SiO2 | H2/450 ℃ | 410 | 0.10 | 99.0 | 苯(64.0) | [ | ||
24a | NiMo/SBA⁃15 | H2/500 ℃ | 300 | 85.0 | 苯酚(28.9) | [ | |||
25 | NiMoS2/CMK⁃3 | H2/450 ℃ | 300 | 6 | 5.00 | 十二烷 | 100.0 | 苯酚(31.5)、环己烷(35.7) | [ |
26 | FeNi/ZrO2 | H2/500 ℃ | 300 | 8 | 4.00 | 辛烷 | 100.0 | 环己烷(89.4) | [ |
27a | Ni5Fe1/CNT | H2/N2/400 ℃ | 300 | 3.00 | 100.0 | 环己烷(99.8) | [ | ||
28a | Ni1Fe5/CNT | H2/N2/400 ℃ | 300 | 3.00 | 50.0 | 苯酚(42.0) | [ | ||
29 | NiCu/Ti⁃MCM⁃41 | H2/He/550 ℃ | 260 | 6 | 10.00 | 庚烷 | 74.2 | 环己烷(36.2) | [ |
30a | NiGa/SiO2 | 300 | 0.10 | 98.4 | 苯酚(71.0) | [ | |||
31 | Ni⁃Re/SiO2 | H2/N2/350 ℃ | 250 | 5 | 3.00 | 十二烷 | 100.0 | 环己烷(95.0) | [ |
32a | NiReO x /ZrO2 | 350 ℃(in⁃situ) | 350 | 0.10 | 51.8 | 苯(30.5) | [ | ||
33 | NiZr⁃I/CMK⁃3 | H2/450 ℃ | 300 | 8 | 5.00 | 十六烷 | 100.0 | 环己醇(47.9) | [ |
34c | NiCeO2/rGO | H2/N2/350 ℃ | 300 | 4 | H2O | 23.0 | 邻苯二酚(9.2) | [ | |
35a | NiW/TiO2 | H2S/H2/400 ℃ | 320 | 5.50 | 十六烷 | 100.0 | 环己烷(65.0) | [ |
序号 | 催化剂 | 催化剂 还原条件 | 反应条件 | 愈创木酚 转化率/% | 主要产物 收率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
T/°C | t/h | p(H2)/MPa | 溶剂 | ||||||
1 | Mo/AC | 350 | 1.0 | 4.00 | 十二烷 | 99.9 | 苯酚(72.0) | [ | |
2 | Mo2C | 350 | 5.00 | 十二烷 | 30.0 | 苯酚(20.0) | [ | ||
3 | Mo2C/CNF | 350 | 4.0 | 2.00 | 正十烷 | 80.0 | 苯酚(38.0) | [ | |
4 | Mo2C/CNF | H2/350 ℃ | 300 | 2.0 | 2.00 | 正十烷 | 67.0 | 含一个O产物(27.0) | [ |
5 | β⁃Mo2C/CNF | 300 | 2.0 | 2.00 | 正十烷 | 67.0 | 苯酚(28.0) | [ | |
6 | MoWC | H2/450 ℃ | 350 | 1.0 | 2.75 | 正十烷 | 93.0 | 苯(65.0) | [ |
7 | MoO2/AC | H2/600 ℃ | 300 | 3.0 | 3.00 | 四氢萘 | 98.0 | 苯酚(72.0) | [ |
8 | Co/ZrP | H2/500 ℃ | 300 | 2.5 | 4.00 | 十二烷 | 100.0 | 环己烷(76.0) | [ |
9 | Co/HMETS⁃10 | H2/400 ℃ | 280 | 2.0 | 2.00 | 十二烷 | 99.5 | 环己烷(96.9) | [ |
10 | Co/G | H2/300 ℃ | 300 | 4.0 | 5.00 | 十二烷 | 77.0 | 苯酚(52.5) | [ |
11 | Co⁃MoO2/C | 340 | 4.0 | 0.80 | 正己烷 | 97.0 | 苯+甲苯(61.1) | [ | |
12 | Co⁃MoO2/C | 340 | 4.0 | 0.80 | 乙醇 | 84.5 | 苯酚+邻苯二酚+甲苯(75.2) | [ | |
13 | CoMoS/γ⁃Al2O3 | H2/H2S/400 ℃ | 350 | 2.0 | 8.00 | 十六烷 | 100.0 | 苯(70.0) | [ |
14 | CoMoS/γ⁃Al2O3 | H2/H2S/400 ℃ | 250 | 5.50 | 二甲苯+乙苯 | 100.0 | 苯酚(55.0) | [ | |
15 | Fe/CeO2 | 400 | 2.0~4.0 | 0.10 | 99.0 | 苯酚(56.0) | [ | ||
16 | Fe/AC | H2/Ar/550 ℃ | 300 | 0.10 | 87.0 | 1,2⁃二甲氧基苯(82.0) | [ | ||
17 | Fe/SiO2 | H2/500 ℃ | 400 | 0.10 | 74.0 | 苯+苯酚+苯甲醚(38.0) | [ |
表2 用于愈创木酚加氢脱氧反应的其他过渡金属催化剂
序号 | 催化剂 | 催化剂 还原条件 | 反应条件 | 愈创木酚 转化率/% | 主要产物 收率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
T/°C | t/h | p(H2)/MPa | 溶剂 | ||||||
1 | Mo/AC | 350 | 1.0 | 4.00 | 十二烷 | 99.9 | 苯酚(72.0) | [ | |
2 | Mo2C | 350 | 5.00 | 十二烷 | 30.0 | 苯酚(20.0) | [ | ||
3 | Mo2C/CNF | 350 | 4.0 | 2.00 | 正十烷 | 80.0 | 苯酚(38.0) | [ | |
4 | Mo2C/CNF | H2/350 ℃ | 300 | 2.0 | 2.00 | 正十烷 | 67.0 | 含一个O产物(27.0) | [ |
5 | β⁃Mo2C/CNF | 300 | 2.0 | 2.00 | 正十烷 | 67.0 | 苯酚(28.0) | [ | |
6 | MoWC | H2/450 ℃ | 350 | 1.0 | 2.75 | 正十烷 | 93.0 | 苯(65.0) | [ |
7 | MoO2/AC | H2/600 ℃ | 300 | 3.0 | 3.00 | 四氢萘 | 98.0 | 苯酚(72.0) | [ |
8 | Co/ZrP | H2/500 ℃ | 300 | 2.5 | 4.00 | 十二烷 | 100.0 | 环己烷(76.0) | [ |
9 | Co/HMETS⁃10 | H2/400 ℃ | 280 | 2.0 | 2.00 | 十二烷 | 99.5 | 环己烷(96.9) | [ |
10 | Co/G | H2/300 ℃ | 300 | 4.0 | 5.00 | 十二烷 | 77.0 | 苯酚(52.5) | [ |
11 | Co⁃MoO2/C | 340 | 4.0 | 0.80 | 正己烷 | 97.0 | 苯+甲苯(61.1) | [ | |
12 | Co⁃MoO2/C | 340 | 4.0 | 0.80 | 乙醇 | 84.5 | 苯酚+邻苯二酚+甲苯(75.2) | [ | |
13 | CoMoS/γ⁃Al2O3 | H2/H2S/400 ℃ | 350 | 2.0 | 8.00 | 十六烷 | 100.0 | 苯(70.0) | [ |
14 | CoMoS/γ⁃Al2O3 | H2/H2S/400 ℃ | 250 | 5.50 | 二甲苯+乙苯 | 100.0 | 苯酚(55.0) | [ | |
15 | Fe/CeO2 | 400 | 2.0~4.0 | 0.10 | 99.0 | 苯酚(56.0) | [ | ||
16 | Fe/AC | H2/Ar/550 ℃ | 300 | 0.10 | 87.0 | 1,2⁃二甲氧基苯(82.0) | [ | ||
17 | Fe/SiO2 | H2/500 ℃ | 400 | 0.10 | 74.0 | 苯+苯酚+苯甲醚(38.0) | [ |
序号 | 催化剂 | 催化剂 还原条件 | 反应条件 | 愈创木酚转化率/% | 主要产物 收率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
T/°C | t/h | p(H2)/MPa | 溶剂 | ||||||
1 | Ru/TiO2 | H2/250 ℃ | 240 | 1.00 | 1.00 | 二氧六环 | 71.7 | 环己醇(51.0) | [ |
2 | Ru/Cl/TiO2 | H2/250 ℃ | 240 | 1.00 | 1.00 | 二氧六环 | 45.0 | 苯酚(29.0) | [ |
3 | Ru/WZrO2 | H2/Ar/400 ℃ | 270 | 1.00 | 4.00 | H2O | 96.8 | 不含O产物(56.5) | [ |
4 | Ru/TiO2⁃γAl2O3 | 240 | 6.00 | 1.00 | 辛烷 | 91.4 | 环己烷(81.7) | [ | |
5 | Ru/Al⁃HMS(10) | H2/400 ℃ | 250 | 3.00 | 5.00 | 甲醇 | 97.0 | 环己烷(67.0) | [ |
6 | Ru/BEA⁃12.5 | 250 | 2.00 | 4.00 | 100.0 | 环己烷(71.9) | [ | ||
7 | Ru/Al2O3 | 250 | 2.00 | 4.00 | 100.0 | 2⁃甲氧基环己醇(74.8) | [ | ||
8 | Ru/Hβ⁃25 | 180 | 2.00 | 2.00 | 正己烷 | 100.0 | 环己烷(100.0) | [ | |
9a | Ru/C | H2/250 ℃ | 200 | 5.00 | 异丙醇 | 99.0 | 环己醇(70.0) | [ | |
10 | Ru/AC | 250 | 4.00 | 5.00 | H2O | 25.1 | 苯酚+邻苯二酚 | [ | |
11 | Ru/C+H2WO4 | 260 | 4.00 | 3.00 | 辛烷 | 99.9 | 环己烷(99.9) | [ | |
12 | RuCo⁃300 | H2/Ar/300 ℃ | 310 | 1.00 | 正十烷 | 99.0 | 环己烷(85.3) | [ | |
13 | RuCo/C⁃600 | H2/600 ℃ | 200 | 1.50 | 1.00 | 正十烷 | 100.0 | 环己烷(94.0) | [ |
14 | RuCo/SiO2⁃ZrO2 | H2/550 ℃ | 260 | 4.00 | 1.00 | 辛烷 | 99.9 | 环己烷(88.3) | [ |
15 | RuNi/SiO2⁃ZrO2 | H2/550 ℃ | 260 | 4.00 | 1.00 | 辛烷 | 100.0 | 环己烷(74.5) | [ |
16 | Ru⁃MnO/CNTs | H2/400 ℃ | 200 | 3.33 | 2.00 | 十氢萘 | 99.4 | 环己醇(85.8) | [ |
17 a | RuRe/C | H2/250 ℃ | 200 | 5.00 | 异丙醇 | 95.0 | 环己烷(56.0) | [ |
表3 用于愈创木酚的加氢脱氧反应的Ru基催化剂
序号 | 催化剂 | 催化剂 还原条件 | 反应条件 | 愈创木酚转化率/% | 主要产物 收率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
T/°C | t/h | p(H2)/MPa | 溶剂 | ||||||
1 | Ru/TiO2 | H2/250 ℃ | 240 | 1.00 | 1.00 | 二氧六环 | 71.7 | 环己醇(51.0) | [ |
2 | Ru/Cl/TiO2 | H2/250 ℃ | 240 | 1.00 | 1.00 | 二氧六环 | 45.0 | 苯酚(29.0) | [ |
3 | Ru/WZrO2 | H2/Ar/400 ℃ | 270 | 1.00 | 4.00 | H2O | 96.8 | 不含O产物(56.5) | [ |
4 | Ru/TiO2⁃γAl2O3 | 240 | 6.00 | 1.00 | 辛烷 | 91.4 | 环己烷(81.7) | [ | |
5 | Ru/Al⁃HMS(10) | H2/400 ℃ | 250 | 3.00 | 5.00 | 甲醇 | 97.0 | 环己烷(67.0) | [ |
6 | Ru/BEA⁃12.5 | 250 | 2.00 | 4.00 | 100.0 | 环己烷(71.9) | [ | ||
7 | Ru/Al2O3 | 250 | 2.00 | 4.00 | 100.0 | 2⁃甲氧基环己醇(74.8) | [ | ||
8 | Ru/Hβ⁃25 | 180 | 2.00 | 2.00 | 正己烷 | 100.0 | 环己烷(100.0) | [ | |
9a | Ru/C | H2/250 ℃ | 200 | 5.00 | 异丙醇 | 99.0 | 环己醇(70.0) | [ | |
10 | Ru/AC | 250 | 4.00 | 5.00 | H2O | 25.1 | 苯酚+邻苯二酚 | [ | |
11 | Ru/C+H2WO4 | 260 | 4.00 | 3.00 | 辛烷 | 99.9 | 环己烷(99.9) | [ | |
12 | RuCo⁃300 | H2/Ar/300 ℃ | 310 | 1.00 | 正十烷 | 99.0 | 环己烷(85.3) | [ | |
13 | RuCo/C⁃600 | H2/600 ℃ | 200 | 1.50 | 1.00 | 正十烷 | 100.0 | 环己烷(94.0) | [ |
14 | RuCo/SiO2⁃ZrO2 | H2/550 ℃ | 260 | 4.00 | 1.00 | 辛烷 | 99.9 | 环己烷(88.3) | [ |
15 | RuNi/SiO2⁃ZrO2 | H2/550 ℃ | 260 | 4.00 | 1.00 | 辛烷 | 100.0 | 环己烷(74.5) | [ |
16 | Ru⁃MnO/CNTs | H2/400 ℃ | 200 | 3.33 | 2.00 | 十氢萘 | 99.4 | 环己醇(85.8) | [ |
17 a | RuRe/C | H2/250 ℃ | 200 | 5.00 | 异丙醇 | 95.0 | 环己烷(56.0) | [ |
序号 | 催化剂 | 催化剂 还原条件 | 反应条件 | 愈创木酚转化率/% | 主要产物 收率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
T/°C | t/h | p(H2)/MPa | 溶剂 | ||||||
1 | Pt/Hβ | H2/500 ℃ | 250 | 2 | 4.00 | 正十烷 | 98.0 | 环己烷(44.0) | [ |
2 | Pt/Hβ | H2/300 ℃ | 350 | 2 | 0.10 | 100.0 | 芳香族化合物(85.0) | [ | |
3 | Pt/Nb2O5 | H2/300 ℃ | 300 | 0.10 | 35.5 | 苯酚(19.1) | [ | ||
4 | Pt⁃Mo/TiO2 | H2/350 ℃ | 285 | 1 | 4.00 | 94.0 | 环己烷(73.4) | [ | |
5a | Pd/C | 230 | 4 | 异丙醇 | 98.5 | 1⁃甲丙基环己烷(49.3) | [ | ||
6 | Ni@Pd/SD | H2/450 ℃ | 450 | 1 | 0.10 | 18.0 | 苯酚(12.0) | [ | |
7 | Pd⁃Fe/Al⁃MCM⁃41 | H2/450 ℃ | 400 | 1 | 0.10 | 100.0 | 苯酚(50.0) | [ | |
8 | Pd⁃Fe/Al⁃MCM⁃41 | H2/450 ℃ | 400 | 0.10 | 98.0 | 含一个O产物(80.0) | [ | ||
9 | PdRe/C | H2/400 ℃ | 300 | 0.10 | 90.0 | 苯(35.0) | [ | ||
10 | Re/TiO2 | H2/300 ℃ | 280 | 3 | 2.00 | 正庚烷 | 100.0 | 环己烷+苯(92.1) | [ |
11 | Rh/ZrO2 | H2/350 ℃ | 300 | 4 | 7.00 | 十二烷 | 100.0 | 环己烷(87.7) | [ |
12 | Ag/TiO2⁃A | H2/Ar/400 ℃ | 300 | 3 | 3.00 | 正庚烷 | 77.0 | 苯酚(43.0) | [ |
13 | Au/TiO2⁃A | 300 | 6.50 | 甲苯 | 43.1 | 酚类产物(37.5) | [ |
表4 用于愈创木酚加氢脱氧反应的其他贵金属催化剂
序号 | 催化剂 | 催化剂 还原条件 | 反应条件 | 愈创木酚转化率/% | 主要产物 收率/% | 文献 | |||
---|---|---|---|---|---|---|---|---|---|
T/°C | t/h | p(H2)/MPa | 溶剂 | ||||||
1 | Pt/Hβ | H2/500 ℃ | 250 | 2 | 4.00 | 正十烷 | 98.0 | 环己烷(44.0) | [ |
2 | Pt/Hβ | H2/300 ℃ | 350 | 2 | 0.10 | 100.0 | 芳香族化合物(85.0) | [ | |
3 | Pt/Nb2O5 | H2/300 ℃ | 300 | 0.10 | 35.5 | 苯酚(19.1) | [ | ||
4 | Pt⁃Mo/TiO2 | H2/350 ℃ | 285 | 1 | 4.00 | 94.0 | 环己烷(73.4) | [ | |
5a | Pd/C | 230 | 4 | 异丙醇 | 98.5 | 1⁃甲丙基环己烷(49.3) | [ | ||
6 | Ni@Pd/SD | H2/450 ℃ | 450 | 1 | 0.10 | 18.0 | 苯酚(12.0) | [ | |
7 | Pd⁃Fe/Al⁃MCM⁃41 | H2/450 ℃ | 400 | 1 | 0.10 | 100.0 | 苯酚(50.0) | [ | |
8 | Pd⁃Fe/Al⁃MCM⁃41 | H2/450 ℃ | 400 | 0.10 | 98.0 | 含一个O产物(80.0) | [ | ||
9 | PdRe/C | H2/400 ℃ | 300 | 0.10 | 90.0 | 苯(35.0) | [ | ||
10 | Re/TiO2 | H2/300 ℃ | 280 | 3 | 2.00 | 正庚烷 | 100.0 | 环己烷+苯(92.1) | [ |
11 | Rh/ZrO2 | H2/350 ℃ | 300 | 4 | 7.00 | 十二烷 | 100.0 | 环己烷(87.7) | [ |
12 | Ag/TiO2⁃A | H2/Ar/400 ℃ | 300 | 3 | 3.00 | 正庚烷 | 77.0 | 苯酚(43.0) | [ |
13 | Au/TiO2⁃A | 300 | 6.50 | 甲苯 | 43.1 | 酚类产物(37.5) | [ |
1 | Crist E, Mora C, Engelman R. The interaction of human population, food production, and biodiversity protection[J]. Science, 2017, 356(6335): 260⁃264. |
2 | Güney T. Renewable energy, non⁃renewable energy and sustainable development[J]. International Journal of Sustainable Development & World Ecology, 2019, 26(5): 389⁃397. |
3 | Lin L F, Han X, Han B X, et al. Emerging heterogeneous catalysts for biomass conversion: Studies of the reaction mechanism[J]. Chemical Society Reviews, 2021, 50: 11270⁃11292. |
4 | Zhang T. Taking on all of the biomass for conversion[J]. Science, 2020, 367(6484): 1305⁃1306. |
5 | Blanco E, Aguirre A D A, de León J N D, et al. Relevant aspects of the conversion of guaiacol as a model compound for bio⁃oil over supported molybdenum oxycarbide catalysts[J]. New Journal of Chemistry, 2020, 44(28): 12027⁃12035. |
6 | Sangnikul P, Phanpa C, Xiao R, et al. Role of copper⁃or cerium⁃promoters on NiMo/γ⁃Al2O3 catalysts in hydrodeoxygenation of guaiacol and bio⁃oil[J]. Applied Catalysis A: General, 2019, 574: 151⁃160. |
7 | Li T, Li H, Huang G M, et al. Transforming biomass tar into a highly active Ni⁃based carbon⁃supported catalyst for selective hydrogenation⁃transalkylation of guaiacol[J]. Journal of Analytical and Applied Pyrolysis, 2020, 153: 104976⁃104983. |
8 | Zhou M H, Ye J, Liu P, et al. Water⁃assisted selective hydrodeoxygenation of guaiacol to cyclohexanol over supported Ni and Co bimetallic catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8824⁃8835. |
9 | Adilina I B, Rinaldi N, Simanungkalit S P, et al. Hydrodeoxygenation of guaiacol as a bio⁃oil model compound over pillared clay⁃supported nickel⁃molybdenum catalysts[J]. The Journal of Physical Chemistry C, 2019, 123: 21429⁃21439. |
10 | Lai Q H, Zhang C, Holles J H. Hydrodeoxygenation of guaiacol over Ni@Pd and Ni@Pt bimetallic overlayer catalysts[J]. Applied Catalysis A: General, 2016, 528: 1⁃13. |
11 | Gutiérrez⁃Rubio S, Berenguer A, Přech J, et al. Guaiacol hydrodeoxygenation over Ni2P supported on 2D⁃zeolites[J]. Catalysis Today, 2020, 345: 48⁃58. |
12 | Zhang X Q, Yan P F, Zhao B, et al. Identification of electron⁃rich mononuclear Ni atoms on TiO2⁃A distinguished from Ni particles on TiO2⁃R in guaiacol hydrodeoxygenation pathways[J]. Catalysis Science & Technology, 2021, 11(1): 297⁃311. |
13 | Jin W, Pastor P L, Villora⁃Pico J J, et al. In⁃situ HDO of guaiacol over nitrogen⁃doped activated carbon supported nickel nanoparticles[J]. Applied Catalysis A: General, 2021, 620: 118033⁃118040. |
14 | Rong Z, Lu J Q, Yu G Q, et al. Promoting selective hydrodeoxygenation of guaiacol over amorphous nanoporous NiMnO2[J]. Catalysis Communications, 2020, 140: 105987⁃105991. |
15 | Lu M H, Jiang Y J, Sun Y, et al. Hydrodeoxygenation of guaiacol catalyzed by ZrO2⁃CeO2 supported nickel catalysts with high⁃loading[J]. Energy & Fuels, 2020, 34: 4685⁃4692. |
16 | Zhang X Q, Yan P F, Zhao B, et al. Selective hydrodeoxygenation of guaiacol to phenolics by Ni/anatase TiO2 catalyst formed by cross⁃surface migration of Ni and TiO2[J]. ACS Catalysis, 2019, 9(4): 3551⁃3563. |
17 | Lu M H, Sun Y, Zhang P, et al. Hydrodeoxygenation of guaiacol catalyzed by high⁃loading Ni catalysts supported on SiO2⁃TiO2 binary oxides[J]. Industrial & Engineering Chemistry Research, 2019, 58(4): 1513⁃1524. |
18 | Lu J Q, Liu X, Yu G Q, et al. Selective hydrodeoxygenation of guaiacol to cyclohexanol catalyzed by nanoporous nickel[J]. Catalysis Letters, 2020, 150(3): 837⁃848. |
19 | Fan X D, Wu Y J, Tu R, et al. Hydrodeoxygenation of guaiacol via rice husk char supported Ni based catalysts: The influence of char supports[J]. Renewable Energy, 2020, 157: 1035⁃1045. |
20 | Lan X F, Hensen E J M, Weber T, et al. Hydrodeoxygenation of guaiacol over Ni2P/SiO2⁃reaction mechanism and catalyst deactivation[J]. Applied Catalysis A: General, 2018, 550: 57⁃66. |
21 | Tran Q K, Ly H V, Kwon B, et al. Catalytic hydrodeoxygenation of guaiacol as a model compound of woody bio⁃oil over Fe/AC and Ni/γ⁃Al2O3 catalysts[J]. Renewable Energy, 2021, 173: 886⁃895. |
22 | Wang H H, Liu Z L, Song Y C, et al. High⁃performance evolution of Ni2P@hierarchical HZSM⁃5 as the guaiacol hydrodeoxygenation catalyst[J]. ACS Omega, 2020, 5(34): 21330⁃21337. |
23 | Liu L J, Liu Y G, Gao X, et al. Hydrodeoxygenation of bio⁃oil model compounds over amorphous NiB/SiO2⁃Al2O3 catalyst in oil⁃water biohasic system[J]. Journal of Fuel Chemistry & Technology, 2017, 45(8): 932⁃938. |
24 | Blanco E, Dongil A B, Escalona N. Synergy between Ni and Co nanoparticles supported on carbon in guaiacol conversion[J]. Nanomaterials (Basel, Switzerland), 2020, 10(11): 2199⁃2216. |
25 | Chen C Z, Zhou M H, Liu P, et al. Flexible NiCo⁃based catalyst for direct hydrodeoxygenation of guaiacol to cyclohexanol[J]. New Journal of Chemistry, 2020, 44(43): 18906⁃18916. |
26 | Patil M L, Lali A M, Dalai A K. Catalytic hydrodeoxygenation of bio⁃oil model compound for production of fuel grade oil[J]. Asia⁃Pacific Journal of Chemical Engineering, 2019, 14(4): 2317⁃2330. |
27 | Tran C C, Stankovikj F, Garcia⁃Perez M, et al. Unsupported transition metal⁃catalyzed hydrodeoxygenation of guaiacol[J]. Catalysis Communications, 2017, 101: 71⁃76. |
28 | He T, Liu X X, Ge Y Z, et al. Gas phase hydrodeoxygenation of anisole and guaiacol to aromatics with a high selectivity over Ni⁃Mo/SiO2[J]. Catalysis Communications, 2017, 102: 127⁃130. |
29 | Lima R W S, Hewer T L R, Alves R M B, et al. Surface analyses of adsorbed and deposited species on the Ni⁃Mo catalysts surfaces after Guaiacol HDO. Influence of the alumina and SBA⁃15 supports[J]. Molecular Catalysis, 2021, 511: 111724⁃111733. |
30 | Mukundan S, Wahab M A, Atanda L, et al. Highly active and robust Ni⁃MoS2 supported on mesoporous carbon: A nanocatalyst for hydrodeoxygenation reactions[J]. RSC Advances, 2019, 9(30): 17194⁃17202. |
31 | Chen Q, Cai C L, Zhang X H, et al. Amorphous FeNi⁃ZrO2⁃catalyzed hydrodeoxygenation of lignin⁃derived phenolic compounds to naphthenic fuel[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 9335⁃9345. |
32 | Fang H H, Zheng J W, Luo X L, et al. Product tunable behavior of carbon nanotubes⁃supported Ni⁃Fe catalysts for guaiacol hydrodeoxygenation[J]. Applied Catalysis A: General, 2017, 529: 20⁃31. |
33 | Hamid S B A, Ambursa M M, Sudarsanam P, et al. Effect of Ti loading on structure⁃activity properties of Cu⁃Ni/Ti⁃MCM⁃41 catalysts in hydrodeoxygenation of guaiacol[J]. Catalysis Communications, 2017, 94: 18⁃22. |
34 | Niu X X, Wang L W, Chen J X. Improved performance of SiO2⁃supported Ni3Ga intermetallic compound for deoxygenation of phenolic compounds[J]. Catalysis Communications, 2020, 140: 106001⁃106006. |
35 | Park C W, Kim J W, Kim H U, et al. Bimetallic Ni‐Re catalysts for the efficient hydrodeoxygenation of biomass⁃derived phenols[J]. International Journal of Energy Research, 2021, 45(11): 16349⁃16361. |
36 | Sirous⁃Rezaei P, Jae J, Cho K, et al. Insight into the effect of metal and support for mild hydrodeoxygenation of lignin⁃derived phenolics to BTX aromatics[J]. Chemical Engineering Journal, 2019, 377: 120121. |
37 | López M, Palacio R, Royer S, et al. Mesostructured CMK⁃3 carbon supported Ni⁃ZrO2 as catalysts for the hydrodeoxygenation of guaiacol[J]. Microporous and Mesoporous Materials, 2020, 292: 109694. |
38 | Parrilla⁃Lahoz S, Jin W, Pastor⁃Pérez L, et al. Guaiacol hydrodeoxygenation in hydrothermal conditions using N⁃doped reduced graphene oxide (RGO) supported Pt and Ni catalysts: Seeking for economically viable biomass upgrading alternatives[J]. Applied Catalysis A: General, 2021, 611: 117977⁃117986. |
39 | García⁃Mendoza C, Santolalla⁃Vargas C E, Woolfolk L G, et al. Effect of TiO2 in supported NiWS catalysts for the hydrodeoxygenation of guaiacol[J]. Catalysis Today, 2020, 377: 145⁃156. |
40 | Ansaloni S, Russo N, Pirone R. Hydrodeoxygenation of guaiacol over molybdenum‐based catalysts: The effect of support and the nature of the active site[J]. The Canadian Journal of Chemical Engineering, 2017, 95(9): 1730⁃1744. |
41 | Moreira R, Ochoa E, Pinilla J L, et al. Liquid⁃phase hydrodeoxygenation of guaiacol over Mo2C supported on commercial CNF. Effects of operating conditions on conversion and product selectivity[J]. Catalysts, 2018, 8(4): 127. |
42 | Ochoa E, Torres D, Pinilla J L, et al. Nanostructured carbon material effect on the synthesis of carbon⁃supported molybdenum carbide catalysts for guaiacol hydrodeoxygenation[J]. Energies, 2020, 13(5): 1189. |
43 | Ochoa E, Torres D, Moreira R, et al. Carbon nanofiber supported Mo2C catalysts for hydrodeoxygenation of guaiacol: The importance of the carburization process[J]. Applied Catalysis B: Environmental, 2018, 239: 463⁃474. |
44 | Tran C C, Han Y L, Garcia⁃Perez M, et al. Synergistic effect of Mo⁃W carbides on selective hydrodeoxygenation of guaiacol to oxygen⁃free aromatic hydrocarbons[J]. Catalysis Science & Technology, 2019, 9(6): 1387⁃1397. |
45 | Cai Z, Wang F M, Zhang X B, et al. Selective hydrodeoxygenation of guaiacol to phenolics over activated carbon supported molybdenum catalysts[J]. Molecular Catalysis, 2017, 441: 28⁃34. |
46 | Han G H, Lee M W, Park S, et al. Revealing the factors determining the selectivity of guaiacol HDO reaction pathways using ZrP⁃supported Co and Ni catalysts[J]. Journal of Catalysis, 2019, 377: 343⁃357. |
47 | Mei X, Wu D F. Highly selective catalytic conversion of lignin⁃derived phenolic compounds to cycloalkanes over a hierarchically structured zeolite catalyst[J]. Journal of Materials Science, 2019, 54(4): 2940⁃2959. |
48 | Liu G H, Zong Z M, Liu Z Q, et al. Solvent⁃controlled selective hydrodeoxygenation of bio⁃derived guaiacol to arenes or phenols over a biochar supported Co⁃doped MoO2 catalyst[J]. Fuel Processing Technology, 2018, 179: 114⁃123. |
49 | Gutierrez A, Turpeinen E M, Viljava T R, et al. Hydrodeoxygenation of model compounds on sulfided CoMo/γ⁃Al2O3 and NiMo/γ⁃Al2O3 catalysts; role of sulfur⁃containing groups in reaction networks[J]. Catalysis Today, 2017, 285: 125⁃134. |
50 | Mora⁃Vergara I D, Moscoso L H, Gaigneaux E M, et al. Hydrodeoxygenation of guaiacol using NiMo and CoMo catalysts supported on alumina modified with potassium[J]. Catalysis Today, 2018, 302: 125⁃135. |
51 | Li C C, Nakagawa Y, Tamura M, et al. Hydrodeoxygenation of guaiacol to phenol over ceria⁃supported iron catalysts[J]. ACS Catalysis, 2020, 10(24): 14624⁃14639. |
52 | Olcese R N, Bettahar M, Petitjean D, et al. Gas⁃phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst[J]. Applied Catalysis B, Environmental, 2012, 115⁃116: 63⁃73. |
53 | Tran N T T, Uemura Y, Ramli A, et al. Vapor⁃phase hydrodeoxygenation of lignin⁃derived bio⁃oil over Al⁃MCM⁃41 supported Pd⁃Co and Pd⁃Fe catalysts[J]. Molecular Catalysis, 2021,523: 111435⁃111445. |
54 | Tran N, Uemura Y, Trinh T, et al. Hydrodeoxygenation of guaiacol over Pd⁃Co and Pd⁃Fe catalysts: Deactivation and regeneration[J]. Processes, 2021, 9(3): 430. |
55 | Wang X C, Wu P X, Wang Z Q, et al. Chlorine⁃modified Ru/TiO2 catalyst for selective guaiacol hydrodeoxygenation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(8): 3083⁃3094. |
56 | Dwiatmoko A A, Kim I, Zhou L, et al. Hydrodeoxygenation of guaiacol on tungstated zirconia supported Ru catalysts[J]. Applied Catalysis A: General, 2017, 543: 10⁃16. |
57 | Lin B Q, Li R X, Shu R Y, et al. Synergistic effect of highly dispersed Ru and moderate acid site on the hydrodeoxygenation of phenolic compounds and raw bio⁃oil[J]. Journal of the Energy Institute, 2020, 93(3): 847⁃856. |
58 | Roldugina E A, Naranov E R, Maximov A L, et al. Hydrodeoxygenation of guaiacol as a model compound of bio⁃oil in methanol over mesoporous noble metal catalysts[J]. Applied Catalysis A: General, 2018, 553: 24⁃35. |
59 | Yan P H, Mensah J, Drewery M, et al. Role of metal support during ru⁃catalysed hydrodeoxygenation of biocrude oil[J]. Applied Catalysis B: Environmental, 2021, 281: 119470⁃119481. |
60 | Hu L, Wei X Y, Zong Z M. Ru/Hβ catalyst prepared by the deposition⁃precipitation method for enhancing hydrodeoxygenation ability of guaiacol and lignin⁃derived bio⁃oil to produce hydrocarbons[J]. Journal of the Energy Institute, 2021, 97(7): 48⁃57. |
61 | Kim M, Ha J M, Lee K Y, et al. Catalytic transfer hydrogenation/hydrogenolysis of guaiacol to cyclohexane over bimetallic RuRe/C catalysts[J]. Catalysis Communications, 2016, 86: 113⁃118. |
62 | Wei J, José L S, Laura P P, et al. Noble metal supported on activated carbon for “hydrogen free” HDO reactions: Exploring economically advantageous routes for biomass valorisation[J]. ChemCatChem, 2019, 11(17): 4434⁃4441. |
63 | Yang Z, Luo B W, Shu R Y, et al. Efficient hydrodeoxygenation of phenolic compounds and raw lignin⁃oil under a temperature⁃controlled phase⁃transfer catalysis[J]. Fuel, 2021, 291: 120091⁃120100. |
64 | Liang X, Fan G L, Yang L, et al. Structure⁃tunable pompon⁃like RuCo catalysts: Insight into the roles of atomically dispersed Ru⁃Co sites and crystallographic structures for guaiacol hydrodeoxygenation[J]. Journal of Catalysis, 2021, 398: 76⁃88. |
65 | Xu Q Q, Shi Y S, Yang L, et al. The promotional effect of surface Ru decoration on the catalytic performance of Co⁃based nanocatalysts for guaiacol hydrodeoxygenation[J]. Molecular Catalysis, 2020, 497: 111224⁃111233. |
66 | Shu R Y, Li R X, Liu Y, et al. Enhanced adsorption properties of bimetallic RuCo catalyst for the hydrodeoxygenation of phenolic compounds and raw lignin⁃oil[J]. Chemical Engineering Science, 2020, 227: 115920⁃115955. |
67 | Li R X, Qiu J J, Chen H Q, et al. Hydrodeoxygenation of phenolic compounds and raw lignin⁃oil over bimetallic RuNi catalyst: An experimental and modeling study focusing on adsorption properties[J]. Fuel, 2020, 281: 118758⁃118767. |
68 | Long W, Liu P L, Xiong W, et al. Conversion of guaiacol as lignin model component using acid⁃treated, multi⁃walled carbon nanotubes supported Ru⁃MnO bimetallic catalysts[J]. Canadian Journal of Chemistry, 2020, 98(2): 57⁃65. |
69 | Lee E H, Parket R S, Kim H, et al. Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 18⁃21. |
70 | Nie L, Peng B, Zhu X L. Vapor‐phase hydrodeoxygenation of guaiacol to aromatics over Pt/HBeta: Identification of the role of acid sites and metal sites on the reaction pathway[J]. ChemCatChem, 2018, 10(5): 1064⁃1074. |
71 | Silva N K G, Ferreira R A R, Ribas R M, et al. Gas⁃phase hydrodeoxygenation (HDO) of guaiacol over Pt/Al2O3 catalyst promoted by Nb2O5[J]. Fuel, 2020, 287: 119509⁃119519. |
72 | He Z, Hu M C, Wang X Q. Highly effective hydrodeoxygenation of guaiacol on Pt/TiO2: Promoter effects[J]. Catalysis Today, 2018, 302: 136⁃145. |
73 | Shafaghat H, Lee I G, Jae J, et al. Pd/C catalyzed transfer hydrogenation of pyrolysis oil using 2⁃propanol as hydrogen source[J]. Chemical Engineering Journal, 2019, 377: 119986. |
74 | Thompson S T, Lamb H H. Vapor⁃phase hydrodeoxygenation of guaiacol over carbon⁃supported Pd, Re and PdRe catalysts[J]. Applied Catalysis A: General, 2018, 563: 105⁃117. |
75 | Jeonga Y, Park C W, Park Y K, et al. Investigation of the activity and selectivity of supported rhenium catalysts for the hydrodeoxygenation of 2⁃methoxyphenol[J]. Catalysis Today, 2020, 375: 164⁃173. |
76 | He Y F, Bie Y W, Lehtonen J, et al. Hydrodeoxygenation of guaiacol as a model compound of lignin⁃derived pyrolysis bio⁃oil over zirconia⁃supported Rh catalyst: Process optimization and reaction kinetics[J]. Fuel, 2019, 239: 1015⁃1027. |
77 | Liu K R, Yan P F, Jiang H, et al. Silver initiated hydrogen spillover on anatase TiO2 creates active sites for selective hydrodeoxygenation of guaiacol[J]. Journal of Catalysis, 2019, 369: 396⁃404. |
78 | Mao J B, Zhou J X, Zhi X, et al. Anatase TiO2 activated by gold nanoparticles for selective hydrodeoxygenation of guaiacol to phenolics[J]. ACS Catalysis, 2017, 7(1): 695⁃705. |
[1] | 杜意恩, 杨召弟, 李玉梅. TiO2/Fe2O3纳米复合材料的制备及光催化性能[J]. 辽宁石油化工大学学报, 2023, 43(4): 1-7. |
[2] | 李杰, 方可欣, 姚丽珠. CNTs/Bi12O17Cl2光催化剂的制备及其光降解罗丹明B性能[J]. 辽宁石油化工大学学报, 2021, 41(6): 42-47. |
[3] | 石怀川, 石磊. 纳米碳颗粒/氮化碳复合材料的制备及光催化性能[J]. 辽宁石油化工大学学报, 2021, 41(4): 41-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||