辽宁石油化工大学学报 ›› 2011, Vol. 31 ›› Issue (4): 80-83.DOI: 10.3696/j.issn.1672-6952.2011.04.021

• 数学与管理 • 上一篇    下一篇

J-对称微分算子自共轭域的辛几何刻画(Ⅲ)

王志敬李丽君   

  1. 辽宁石油化工大学理学院,辽宁抚顺 113001
  • 收稿日期:2011-08-30 出版日期:2011-12-25 发布日期:2017-07-14

Symplectic Geometry Characterization of Self-Adjoint DomainsforJ-Symmetric Differential Operators (Ⅲ)

WANG Zhi-jing, LI Li-jun   

  1. School of Sciences, Liaoning Shihua University, Fushun Liaoning 113001,P.R.China
  • Received:2011-08-30 Published:2011-12-25 Online:2017-07-14

摘要: 研究了二阶奇型J-对称微分算子辛几何刻画问题,通过构造商空间,应用辛几何的方法讨论了二阶J-对称微分算子的自共轭扩张问题。给出了与二阶微分算子自共轭域相对应的完全J-Lagrangian子流型的分类与描述。

关键词: 微分算子, J-辛空间, J-Lagrangian子流型

Abstract: The symplectic geometry characterization of second order singular J- symmetric differential operators was investigated. By constructing different quotient spaces, self-adjoint extensions of second order J- symmetric differential operators were studied using the method of symplectic geometry. Then classification and description of complete J-Lagrangian submanifold corresponding with self-adjoint domains of second order differential operators were obtained.

Key words: Differential operators, J-Symplectic spaces, J-Lagrangian submanifold

引用本文

王志敬, 李丽君. J-对称微分算子自共轭域的辛几何刻画(Ⅲ)[J]. 辽宁石油化工大学学报, 2011, 31(4): 80-83.

WANG Zhi-jing, LI Li-jun. Symplectic Geometry Characterization of Self-Adjoint DomainsforJ-Symmetric Differential Operators (Ⅲ)[J]. Journal of Liaoning Petrochemical University, 2011, 31(4): 80-83.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3696/j.issn.1672-6952.2011.04.021

               https://journal.lnpu.edu.cn/CN/Y2011/V31/I4/80