辽宁石油化工大学学报

辽宁石油化工大学学报 ›› 2011, Vol. 31 ›› Issue (3): 78-80.DOI: 10.3696/j.issn.1672-6952.2011.03.021

• 数学与管理 • 上一篇    下一篇

J-对称微分算子自共轭域的辛几何刻画(Ⅱ)

王志敬   

  1. 辽宁石油化工大学理学院,辽宁抚顺113001
  • 收稿日期:2011-03-22 出版日期:2011-09-25 发布日期:2017-07-05
  • 作者简介:王志敬(1975-),男,河南枣强县,硕士。
  • 基金资助:
    辽宁省教育厅高校科研项目(2004F100);辽宁石油化工大学重点学科建设资助项目(K200409)。

 
Symplectic Geometry Characterization of Self-Adjoint Domainsfor J-Symmetric Differential Operators (Ⅱ)

WANG Zhi-jing   

  1. College of Sciences, Liaoning Shihua University,Fushun Liaoning 113001, P.R.China
  • Received:2011-03-22 Published:2011-09-25 Online:2017-07-05

摘要: 研究了二阶奇型J-对称微分算子辛几何刻画问题,通过构造商空间,应用辛几何的方法讨论了二阶
J-对称微分算子的自共轭扩张问题。给出了与二阶微分算子自共轭域相对应的完全J-Lagrangian子流型的分
类与描述。

关键词: 微分算子 ,  , J-辛空间 ,  , J-Lagrangian子流型

Abstract:  

The symplectic geometry characterization of second order singular J-symmetric differential operators was investigated. By constructing different quotient spaces, self-adjoint extensions of second order J-symmetric differential operators were studied through using the method of symplectic geometry. Therefore the classification and description of complete J-Lagrangian submanifold corresponding with self-adjoint domains of second order differential operators were obtained.

Key words: Differential operators  ,  , J-symplectic spaces ,  , J-Lagrangian submanifold

引用本文

王志敬. J-对称微分算子自共轭域的辛几何刻画(Ⅱ)[J]. 辽宁石油化工大学学报, 2011, 31(3): 78-80.

WANG Zhi-jing.  

Symplectic Geometry Characterization of Self-Adjoint Domainsfor J-Symmetric Differential Operators (Ⅱ)
[J]. Journal of Liaoning Petrochemical University, 2011, 31(3): 78-80.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3696/j.issn.1672-6952.2011.03.021

               https://journal.lnpu.edu.cn/CN/Y2011/V31/I3/78