1 |
Luo Y,Shi Y X,Li W Y,et al.Synchronous enhancement of H2O/CO2 co⁃electrolysis and methanation for efficient one⁃step power⁃to⁃methane[J].Energy Convers Manage,2018,165(1):127⁃136.
|
2 |
Ye L T,Xie K.High⁃temperature electrocatalysis and key materials in solid oxide electrolysis cells[J].Journal of Energy Chemistry,2021,54:736⁃745.
|
3 |
Rabuni M F,VatcharasuwanA N,Li T,et al.High performance micro⁃monolithic reversible solid oxide electrochemical reactor[J].Journal of Power Sources,2020,458:228026.
|
4 |
Yang X X,Sun K N,Ma M J,et al.Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis[J].Applied Catalysis B:Environmental,2020,272:118968.
|
5 |
Li Y,Zhang Q,Mei Z W,et al.Recent advances and perspective on electrochemical ammonia synthesis under ambient conditions[J].Small Methods,2021,5(11):e2100460.
|
6 |
Zhang Y,Wang J C,Yu B,et al.A review of high temperature co⁃electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells(SOECs):Advanced materials and technology[J].Chemical Society Reviews,2017,46(5):1427⁃1463.
|
7 |
Wang T P,Wang J J,Yu L B,et al.Effect of NiO/YSZ cathode support pore structure on CO2 electrolysis via solid oxide electrolysis cells[J].Journal of the European Ceramic Society,2018,38(15):5051⁃5057.
|
8 |
Song Y F,Zhou Z W,Zhang X M,et al.Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell[J].Journal of Materials Chemistry A,2018,6(28):13661⁃13667.
|
9 |
胡兴国,刘立敏,钱欣源,等.过渡金属Fe、Mn掺杂CeO2浸渍改性高温固体氧化物电池Ni⁃YSZ电极的电化学性能研究[J].陶瓷学报,2022,43(3):401⁃411.
|
|
Hu X G,Liu L M,Qian X Y,et al.Electrochemical properties of Fe/Mn doped CeO2 impregnation modified Ni⁃YSZ electrode for high temperature solid oxide cells[J].Journal of Ceramics,2022,43(3):401⁃411.
|
10 |
Wang W,Qu J F,Julião P S B,et al.Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels:A mini review[J].Energy Technology,2019,7(1):33⁃44.
|
11 |
Zhao K,Chen J,Li H B,et al.Effects of Co⁃substitution on the reactivity of double perovskite oxides LaSrFe2- xCoxO6 for the chemical⁃looping steam methane reforming[J].Journal of the Energy Institute,2019,92(3):594⁃603.
|
12 |
杨权森,王芳芳.A位缺陷对铁酸盐基阴极材料硫中毒特性影响[J].石油化工高等学校学报,2021,34(6):1⁃6.
|
|
Yang Q S,Wang F F.Effect of A⁃site defect on sulfur poisoning behaivor of ferrite⁃based cathode materials[J].Journal of Petrochemical Universities,2021,34(6):1⁃6.
|
13 |
Wang S,Jiang H G,Gu Y H,et al.Mo⁃doped La0.6Sr0.4FeO3-δ as an efficient fuel electrode for direct electrolysis of CO2 in solid oxide electrolysis cells[J].Electrochimica Acta,2020,337:135794.
|
14 |
Cao Z Q,Wang Z H,Li F J,et al.Insight into high electrochemical activity of reduced La0.3Sr0.7Fe0.7Ti0.3O3 electrode for high temperature CO2 electrolysis[J].Electrochimica Acta,2020,332:135464.
|
15 |
Zhou Y J,Zhou Z W,Song Y F,et al.Enhancing CO2 electrolysis performance with vanadium⁃doped perovskite cathode in solid oxide electrolysis cell[J].Nano Energy,2018,50:43⁃51.
|
16 |
Zhu J X,Zhang W Q,Li Y F,et al.Enhancing CO2 catalytic activation and direct electroreduction on in⁃situ exsolved Fe/MnOx nanoparticles from (Pr,Ba)2Mn2- yFeyO5+δ layered perovskites for SOEC cathodes[J].Applied Catalysis B:Environmental,2020,268:118389.
|
17 |
Chen L H,Xu J,Wang X,et al.Sr2Fe1.5+ xMo0.5O6-δ cathode with exsolved Fe nanoparticles for enhanced CO2 electrolysis[J].International Journal of Hydrogen Energy,2020,45(21):11901⁃11907.
|
18 |
Lee S,Woo S H,Shin T H,et al.Pd and GDC Co⁃infiltrated LSCM cathode for high⁃temperature CO2 electrolysis using solid oxide electrolysis cells[J].Chemical Engineering Journal,2021,420:127706.
|
19 |
Wu P P,Tian Y T,Lü Z,et al.Electrochemical performance of La0.65Sr0.35MnO3 oxygen electrode with alternately infiltrated Sm0.5Sr0.5CoO3-δ and Sm0.2Ce0.8O1.9 nanoparticles for reversible solid oxide cells[J].International Journal of Hydrogen Energy,2022,47(2):747⁃760.
|
20 |
Chen G,Zhou W,Guan D Q,et al.Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofilms with tunable oxidation state[J].Science Advances,2017,3:1603206.
|
21 |
Choi S,Davenport T C,Haile S M.Protonic ceramic electrochemical cells for hydrogen production and electricity generation:Exceptional reversibility,stability,and demonstrated faradaic efficiency[J].Energy & Environmental Science,2019,12(1):206⁃215.
|
22 |
Lei L B,Zhang J H,Yuan Z H,et al.Progress report on proton conducting solid oxide electrolysis cells[J].Advanced Functional Materials,2019,29(37):1903805.
|
23 |
Li G D,Gou Y J,Ren R Z,et al.Fluorinated Pr2NiO4+δ as high⁃performance air electrode for tubular reversible protonic ceramic cells[J].Journal of Power Sources,2021,508:230343.
|
24 |
Xu K,Zhang H,Xu Y S,et al.An efficient steam‐induced heterostructured air electrode for protonic ceramic electrochemical cells[J].Advanced Functional Materials,2022,32(23):2110998.
|
25 |
Li G D,Gou Y J,Cheng X J,et al.Enhanced electrochemical performance of the Fe⁃based layered perovskite oxygen electrode for reversible solid oxide cells[J].ACS Applied Materials & Interfaces,2021,13(29):34282⁃34291.
|
26 |
Ebbesen S D,Jensen S H,Hauch A,et al.High temperature electrolysis in alkaline cells,solid proton conducting cells,and solid oxide cells[J].Chemical Reviews,2014,114(21):10697⁃10734.
|
27 |
Zhang L H,Xu C M,Sun W,et al.Constructing perovskite/alkaline⁃earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis[J].Separation and Purification Technology,2022,298:121475.
|
28 |
Xu S S,Li S S,Yao W T,et al.Direct electrolysis of CO2 using an oxygen⁃ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode[J].Journal of Power Sources,2013,230:115⁃121.
|
29 |
Song Y F,Zhang X M,Xie K,et al.High⁃temperature CO2 electrolysis in solid oxide electrolysis cells:Developments,challenges,and prospects[J].Advanced Materials,2019,31(50):1902033.
|
30 |
Ma M J,Yang X X,Xu C M,et al.Constructing highly active alloy⁃perovskite interfaces for efficient electrochemical CO2 reduction reaction[J].Separation and Purification Technology,2022,296:121411.
|
31 |
Ye L T,Zhang M Y,Huang P,et al.Enhancing CO2 electrolysis through synergistic control of non⁃stoichiometry and doping to tune cathode surface structures[J].Nature Communications,2017,8:14785.
|
32 |
Chen D,Niakolas D K,Papaefthimoou V,et al.How the surface state of nickel/gadolinium⁃doped ceria cathodes influences the electrochemical performance in direct CO2 electrolysis[J].Journal of Catalysis,2021,404:518⁃528.
|
33 |
Lo Faro M,Trocino S,Zignani S C,et al.Production of syngas by solid oxide electrolysis:A case study[J].International Journal of Hydrogen Energy,2017,42(46):27859⁃27865.
|
34 |
Zheng M H,Wang S,Yang Y,et al.Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni–yttria stabilized zirconia cathodes for solid oxide electrolysis cells[J].Journal of Materials Chemistry A,2018,6(6):2721⁃2829.
|
35 |
Yu S B,Lee S H,Mehran M T,et al.Syngas production in high performing tubular solid oxide cells by using high⁃temperature H2O/CO2 co⁃electrolysis[J].Chemical Engineering Journal,2018,335:41⁃51.
|
36 |
Irvinbe J T S,Neagu D,Vervraeken M C,et al.Evolution of the electrochemical interface in high⁃temperature fuel cells and electrolysers[J].Nature Energy,2016,1:15014.
|
37 |
Wang Y,Liu T,Fang S M,et al.Syngas production on a symmetrical solid oxide H2O/CO2 co⁃electrolysis cell with Sr2Fe1.5Mo0.5O6–δ⁃Sm0.2Ce0.8O1.9 electrodes[J].Journal of Power Sources,2016,305:240⁃248.
|
38 |
Gan J J,Hou N J,Yao T T,et al.A high performing perovskite cathode with in situ exsolved Co nanoparticles for H2O and CO2 solid oxide electrolysis cell[J].Catalysis Today,2021,364:89⁃96.
|
39 |
Wang Y,Liu T,Lei L B,et al.Methane assisted solid oxide co⁃electrolysis process for syngas production[J].Journal of Power Sources,2017,344:119⁃127.
|
40 |
Kyriakou V,Neagu D,Zafeiropoulos G,et al.Symmetrical exsolution of Rh nanoparticles in solid oxide cells for efficient syngas production from greenhouse gases[J].ACS Catalysis,2019,10(2):1278⁃1288.
|
41 |
耿志强,毕帅,王尊,等.基于改进NSGA⁃Ⅱ算法的乙烯裂解炉操作优化[J].化工学报,2020,71(3):1088⁃1094.
|
|
Geng Z Q,Bi S,Wang Z,et al.Operation optimization of ethylene cracking furnace based on improved NSGA⁃Ⅱ algorithm[J].CIESC Journal,2020,71(3):1088⁃1094.
|
42 |
Song Y F,Lin L,Feng W C,et al.Interfacial enhancement by gamma⁃Al2O3 of electrochemical oxidative dehydrogenation of ethane to ethylene in solid oxide electrolysis cells[J].Angewandte Chemie International Edition,2019,58(45):16043⁃16046.
|
43 |
Schwach P,Pan X L,Bao X H.Direct conversion of methane to value⁃added chemicals over heterogeneous catalysts: challenges and prospects[J].Chemical Reviews,2017,117(13):8497⁃8520.
|
44 |
Zhu C L,Hou S S,Hu X L,et al.Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer[J].Nature Communications,2019,10(1):1173.
|
45 |
Ye L T,Shang Z B,Xie K.Selective oxidative coupling of methane to ethylene in a solid oxide electrolyser based on porous single⁃crystalline CeO2 monoliths[J].Angewandte Chemie International Edition,2022,61(32):e202207211.
|
46 |
Zhang X R,Ye L T,Li H,et al.Electrochemical dehydrogenation of ethane to ethylene in a solid oxide electrolyzer[J].ACS Catalysis,2020,10(5):3505⁃3513.
|
47 |
刘恒源,王海辉,徐建鸿.电催化氮还原合成氨电化学系统研究进展[J].化工学报,2022,73(1):32⁃45.
|
|
Liu H Y,Wang H H,Xu J H.dvances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen[J].CIESC Journal,2022,73(1):32⁃45.
|
48 |
Lan R,Alkhazmi K A,Amar I A,et al.Synthesis of ammonia directly from wet air using Sm0.6Ba0.4Fe0.8Cu0.2O3-δ as the catalyst[J].Faraday Discuss,2015,182:353⁃363.
|
49 |
Marnellos G,Stoukides M.Ammonia synthesis at atmospheric pressure[J].Science,1998,282(5386):98⁃100.
|
50 |
Yun D S,Joo J H,Yu J H,et al.Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver,platinum, and lanthanum strontium cobalt ferrite electrocatalyst[J].Journal of Power Sources,2015,284:245⁃251.
|
51 |
Yoo C Y,Park J H,Kim K,et al.Role of protons in electrochemical ammonia synthesis using solid⁃state electrolytes[J].ACS Sustainable Chemistry & Engineering,2017,5(9):7972⁃7978.
|
52 |
Amar I A,Lan R,Hmphreys J,et al.Electrochemical synthesis of ammonia from wet nitrogen via a dual⁃chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3-δ⁃Ce0.8Gd0.18Ca0.02O2-δ composite cathode[J].Catalysis Today,2017,286:51⁃56.
|
53 |
练文超,雷励斌,梁波,等.质子导体固体氧化物电化学装置中氨的利用与合成[J].储能科学与技术,2021,10(6):1998⁃2007.
|
|
Lian W C,Lei L B,Liang B,et al.Utilization and synthesis of ammonia in proton⁃conducting solid oxide electrochemical devices[J].Energy Storage Science and Technology,2021,10(6):1998⁃2007.
|
54 |
Zhang H F,Wang L G,Van Herle J,et al.Techno⁃economic optimization of CO2⁃to⁃methanol with solid⁃oxide electrolyzer[J].Energies,2019,12(19):3742.
|
55 |
Schemme S,Breuer J L,Köller M,et al.H2⁃based synthetic fuels:A techno⁃economic comparison of alcohol,ether and hydrocarbon production[J].International Journal of Hydrogen Energy,2020,45(8):5395⁃5414.
|
56 |
Morejudo S H,Zanón R,Escolástico S,et al. Direct conversion ofmethane to aromatics in a catalytic co⁃ionic membrane reactor[J].Science,2016,353(6299):563⁃565.
|
57 |
Hjalmarsson P,Sun X F,Liu Y L, et al.Durability of high performance Ni⁃yttria stabilized zirconia supported solid oxide electrolysis cells at high current density[J].Journal of Power Sources,2014,262:316⁃322.
|
58 |
Alenazey F,Alyousef Y,Almisned O,et al.Production of synthesis gas (H2 and CO) by high⁃temperature Co⁃electrolysis of H2O and CO2[J].International Journal of Hydrogen Energy,2015,40(32):10274⁃10280.
|
59 |
Chen M,Hogh J V T,Nielsen J U,et al.High temperature Co⁃electrolysis of steam and CO2 in an SOC stack:Performance and durability[J].Fuel Cells,2013,13(4):638⁃645.
|
60 |
Rao M,Sun X F,Hagen A.Durability of solid oxide electrolysis stack under dynamic load cycling for syngas production[J].Journal of Power Sources,2020,451:227781.
|