1 |
李志学, 杨占旭. 共沉淀法制备Co9S8/C材料以及性能研究[J]. 辽宁石油化工大学学报, 2020, 40(2): 1⁃5.
|
|
Li Z X, Yang Z X. Preparation and properties of Co9S8/C materials by coprecipitation method[J]. Journal of Liaoning Shihua University, 2020, 40(2): 1⁃5.
|
2 |
荣冰莹, 刘贺, 惠宇, 等. 多吡啶铁配合物制备及电催化质子还原性能[J]. 石油化工高等学校学报, 2020, 33(2): 1⁃6.
|
|
Rong B Y, Liu H, Hui Y, et al. Synthesis and electrocatalytic proton reduction properties of a polypyridine ligand iron complex[J]. Journal of Petrochemical Universities, 2020, 33(2): 1⁃6.
|
3 |
Zhu J, Hu L S, Zhao P X, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851⁃918.
|
4 |
Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972⁃974.
|
5 |
Han S K, Shin H S. Biohydrogen production by anaerobic fermentation of food waste[J]. International Journal of Hydrogen Energy, 2004, 29(6): 569⁃577.
|
6 |
Goff A L, Artero V, Jousselme B, et al. From hydrogenases to noble metal⁃free catalytic nanomaterials for H2 production and uptake[J]. Science, 2009, 326(5958): 1384⁃1387.
|
7 |
Smith G D W, Tsang S C E. Hydrogen production from formic acid decomposition at room temperature using a Ag⁃Pd core⁃shell nanocatalyst[J]. Nature Nanotechnology, 2011, 6(5): 302⁃307.
|
8 |
Wang X C, Maeda K, Thomas A, et al. A metal⁃free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76⁃80.
|
9 |
Hou D M, Zhou W J, Liu X J, et al. Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction[J]. Electrochimical Acta, 2015, 166: 26⁃31.
|
10 |
Song M, Zhang Z J, Li Q W, et al. Ni⁃foam supported Co(OH)F and Co⁃P nanoarrays for energy⁃efficient hydrogen production via urea electrolysis[J]. Journal of Materials Chemistry A, 2019, 8: 3697⁃3703.
|
11 |
Brown D E, Mahmood M N, Man M C M, et al. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions[J]. Electrochimical Acta, 1984, 29(11): 1551⁃1556.
|
12 |
Hinnemann B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of The American Chemical Society, 2005, 127(15): 5308⁃5309.
|
13 |
Fang S L, Chou T C, Samireddi S, et al. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide[J]. Royal Society Open Science, 2017, 4(3): 161016⁃161026.
|
14 |
Jiang J, Liu Q X, Zeng C M, et al. Cobalt/molybdenum carbide@N⁃doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. Journal of Materials Chemistry A, 2017, 5: 16929⁃16935.
|
15 |
Xie J F, Li S, Zhang X D, et al. Atomically⁃thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution[J]. Chemical Science, 2014, 5(12): 4615⁃4620.
|
16 |
Xu B, Sun Y Q, Chen Z M, et al. Facile and large⁃scale preparation of Co/Ni⁃MoO2 composite as high⁃performance electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20721⁃20726.
|
17 |
Park H, Encinas A, Scheifers J P, et al. Boron⁃dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2017, 56(20): 5575⁃5580.
|
18 |
Jaksic M M. Hypo⁃hyper⁃d⁃electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions[J]. International Journal of Hydrogen Energy, 2001, 26(6): 559⁃578.
|
19 |
Ebtesam H E, Dylan D R, Rajib S, et al. Electrocatalytic activity of bimetallic Ni⁃Mo⁃P nanocrystals for hydrogen evolution reaction[J]. ACS Applied Nano Materials, 2020, 3(8): 8199⁃8207.
|
20 |
Wang Y, Zhang G X, Xu W W, et al. A 3D nanoporous Ni⁃Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution[J]. ChemElectroChem, 2014, 1(7): 1138⁃1144.
|
21 |
Wang M Y, Wang Z, Yu X T, et al. Facile one⁃step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2173⁃2181.
|
22 |
Duan J J, Chen S, Ortíz⁃ledón C A, et al. Phosphorus vacancies boost electrocatalytic hydrogen evolution by two orders of magnitude[J]. Angewandte Chemie International Edition, 2020, 59(21): 8181⁃8186.
|
23 |
Tian L, Qiu G F, Shen Y C, et al. Carbon quantum dots modulated nimop hollow nanopetals as efficient electrocatalysts for hydrogen evolution[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14098⁃14105.
|
24 |
Yang J, Zhang F J, Wang X, et al. Porous molybdenum phosphide nano⁃octahedrons derived from confined phosphorization in UIO⁃66 for efficient hydrogen evolution[J]. Angewandte Chemie International Edition, 2016, 55(41): 12854⁃12858.
|
25 |
Zhang X, Zhou F, Pan W Y, et al. General construction of molybdenum⁃based nanowire arrays for pH⁃universal hydrogen evolution electrocatalysis[J]. Advanced Functional Materials, 2018, 28(43): 1804600⁃1804608.
|