1 |
FAN Y, BAO X J, SHI G. Hβ/HZSM⁃5 composite carrier supported catalysts for olefins reduction of FCC gasoline via hydroisomerization and aromatization[J]. Catalysis Letters, 2005, 105(1⁃2): 67⁃75.
|
2 |
LIU H Y, YU J N, FAN Y, et al. A scenario⁃based clean diesel production strategy for China National Petroleum Corporation[J]. Petroleum Science, 2011, 8(2): 229⁃238.
|
3 |
袁起民, 龙军, 谢朝钢, 等. 高氮原料的催化裂化研究进展[J]. 化工进展, 2008, 27(12): 1929⁃1936.
|
|
YUAN Q M, LONG J, XIE C G, et al. Progress of catalytic cracking of high⁃nitrogen feedstocks[J]. Chemical Industry and Engineering Progress, 2008, 27(12): 1929⁃1936.
|
4 |
HOU B, CAO Z, CHEN W, et al. Properties and chemical composition of typical coker gas oil[J]. Petroleum Science and Technology, 2007, 25(8): 1013⁃1025.
|
5 |
WANG G, LI Z K, HUANG H, et al. Synergistic process for coker gas oil and heavy cycle oil conversion for maximum light production[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11260⁃11268.
|
6 |
BAE E J, NA J G, CHUNG S H, et al. Identification of about 30 000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT⁃ICR MS) and a comparison to conventional oil[J]. Energy & Fuels, 2010, 24(4): 2563⁃2569.
|
7 |
CHEN X B, SHEN B X, SUN J P, et al. Characterization and comparison of nitrogen compounds in hydrotreated and untreated shale oil by electrospray ionization (ESI) fourier transform ion cyclotron resonance mass spectrometry (FT⁃ICR MS)[J]. Energy & Fuels, 2012, 26(3): 1707⁃1714.
|
8 |
李腾, 陈小博, 杨朝合, 等. 催化裂化结焦反应的研究进展[J]. 化工进展, 2015, 34(2): 370⁃375.
|
|
LI T, CHEN X B, YANG C H, et al. Process of coking reaction in fluid catalytic cracking[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 370⁃375.
|
9 |
刘璞生. 稀土对Y型分子筛结构稳定作用和RFCC催化剂性能影响[D]. 长春: 吉林大学, 2019.
|
10 |
隋述会. 改性REY型分子筛性质及裂化性能研究[D]. 杭州: 浙江大学, 2005.
|
11 |
张剑秋, 田辉平, 达志坚, 等. 磷改性Y型分子筛的氢转移性能考察[J]. 石油学报(石油加工), 2002, 18(3): 70⁃74.
|
|
ZHANG J Q, TIAN H P, DA Z J, et al. Investigation on hydrogen transfer properties of Y zeolite modified with phosphorus[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2002, 18(3): 70⁃74.
|
12 |
张瑞驰, 李再婷. 高温水热处理对HZSM⁃5催化剂择形裂化性能及氢转移性能的影响[J]. 石油炼制与化工, 1992(9): 12⁃17.
|
|
ZHANG R C, LI Z T. The effect of high⁃temperature hydrothermal treatment on the shape selective cracking performance and hydrogen transfer performance of HZSM⁃5 catalyst[J]. Petroleum Processing and Petrochemicals, 1992(9): 12⁃17.
|
13 |
王凤桐, 宋海涛, 蒋文斌, 等. 生焦FCC催化剂反应性能研究[J]. 工业催化, 2004, 12(11): 7⁃11.
|
|
WANG F T, SONG H T, JIANG W B, et al. Researches in reaction behaviors of coked FCC catalysts[J]. Industrial Catalysis, 2004, 12(11): 7⁃11.
|
14 |
QIU L M, FU Y, ZHENG J Y, et al. Investigation on the cation location, structure and performances of rare earth⁃exchanged Y zeolite[J]. Journal of Rare Earths, 2017, 35(7): 658⁃666.
|
15 |
肖天存, 王海涛, 安立敦, 等. 热及水热处理对SAPO⁃5分子筛结构的影响[J]. 催化学报, 1997,18(6): 46⁃50.
|
|
XIAO T C, WANG H T, AN L D, et al. The effect of heat and hydrothermal treatment on the structure of SAPO⁃5 molecular sieve[J]. Chinese Journal of Catalysis, 1997,18(6): 46⁃50.
|
16 |
惠宇, 刘金玲, 秦玉才, 等. 柠檬酸改性Hβ分子筛酸性中心的调变与解析[J]. 石油化工高等学校学报, 2020, 33(3): 14⁃20.
|
|
HUI Y, LIU J L, QIN Y C, et al. Discrimination and regulation of the acidic sites of Hβ zeolite with citric acid treatment[J]. Journal of Petrochemical Universities, 2020, 33(3): 14⁃20.
|
17 |
LIU P S, CUI Y, WANG J Y, et al. Structure stabilization of zeolite Y induced by yttrium and its role in promoting n⁃docosane conversion[J]. Microporous and Mesoporous Materials, 2021, 323: 111225.
|
18 |
宋月芹, 胡伟, 陈雪琴, 等. 改性ZSM⁃5分子筛催化剂制备及正己烷催化裂解性能分析[J]. 东北石油大学学报, 2020, 44(5): 89⁃97.
|
|
SONG Y Q, HU W, CHEN X Q, et al. Preparation of modified ZSM⁃5 zeolite catalyst and analysis of n hexane catalytic cracking performance[J]. Journal of Northeast Petroleum University, 2020, 44(5): 89⁃97.
|
19 |
JIAO J H, QIN Y C, ZHENG J, et al. Synergistic mechanism between Brønsted acid site and active cerium species in hydride transfer reaction over CeY zeolites[J]. Journal of Rare Earths, 2020, 38(8): 912⁃920.
|
20 |
DANILOVA I G, DIK P P, SOROKINA T P, et al. Effect of rare earths on acidity of high⁃silica ultrastable REY zeolites and catalytic performance of NiMo/REY+Al2O3 catalysts in vacuum gas oil hydrocracking[J]. Microporous and Mesoporous Materials, 2022, 329: 111547.
|
21 |
刘巍, 郭冬冬, 邓东浩, 等. FAU型多级孔分子筛孔道结构的表征[J]. 石油化工, 2021, 50(1): 1⁃5.
|
|
LIU W, GUO D D, DENG D H, et al. Characterization of the channel structure of FAU⁃type hierarchical porous molecular sieves[J]. Petrochemical Technology, 2021, 50(1): 1⁃5.
|
22 |
张乐. 稀土离子在Y型分子筛中的落位分布及其构效关系研究[D]. 青岛: 中国石油大学(华东), 2019.
|
23 |
程子昂, 马启朋. 水热处理对HZSM⁃5甲醇芳构化催化剂的影响[J]. 当代化工, 2023, 52(3): 613⁃617.
|
|
CHENG Z A, MA Q P. Effect of hydrothermal treatment on HZSM⁃5 methanol aromatization catalyst[J]. Contemporary Chemical Industry, 2023, 52(3): 613⁃617.
|
24 |
尚蕴山, 刘意, 陈昊源, 等. 水热处理对SAPO⁃34分子筛在合成气一步法制烯烃反应中性能的影响[J]. 天然气化工(C1化学与化工), 2022, 47(3): 73⁃80.
|
|
SHANG Y S, LIU Y, CHEN H Y, et al. Effect of hydrothermal treatment on performances of SAPO⁃34 zeolites in direct conversion of syngas to light olefins[J]. Natural Gas Chemical Industry, 2022, 47(3): 73⁃80.
|
25 |
张孔远, 马亮, 张唯稚, 等. 工业C8+芳烃馏分脱烯烃催化剂失活原因分析[J]. 石油炼制与化工, 2023, 54(5): 42⁃47.
|
|
ZHANG K Y, MA L, ZHANG W Z, et al. Cause analysis of deactivation of industrial deolefinization catalyst for C8+aromatics fraction[J]. Petroleum Processing and Petrochemicals, 2023, 54(5): 42⁃47.
|
26 |
YANG S W, KONDO J N, DOMEN K. Formation of alkenyl carbenium ions by adsorption of cyclic precursors on zeolites[J]. Catalysis Today, 2002, 73(1⁃2): 113⁃125.
|
27 |
孙祥博, 惠宇, 张景威, 等. 基于原位红外光谱法的β分子筛上噻吩烷基化反应机理探究[J]. 辽宁石油化工大学学报, 2023, 43(4): 66⁃71.
|
|
SUN X B, HUI Y, ZHANG J W, et al. Study on mechanism of thiophene alkylation reaction on Hβ zeolites by in⁃situ infrared spectroscopy[J]. Journal of Liaoning Petrochemical University, 2023, 43(4): 66⁃71.
|
28 |
NOMURA J, SHIMA H. Adsorption of hydrocarbons and formation of carbocations over zeolites studied by IR spectroscopy[J]. Journal of the Japan Petroleum Institute, 2008, 51(5): 274⁃286.
|