Journal of Petrochemical Universities ›› 2023, Vol. 36 ›› Issue (6): 24-35.DOI: 10.12422/j.issn.1006-396X.2023.06.003
• Progress and Review • Previous Articles Next Articles
Xue BAI1,2(), Jianming PAN2()
Received:
2023-10-09
Revised:
2023-11-08
Published:
2023-12-25
Online:
2024-01-03
Contact:
Jianming PAN
通讯作者:
潘建明
作者简介:
白雪(1993⁃),女,博士,讲师,从事功能化吸附剂的制备及其分离方面的研究;E⁃mail:xue.bai.17@stmail.ujs.edu.cn。
基金资助:
CLC Number:
Xue BAI, Jianming PAN. Uranium Extraction by Adsorption and the Types and Performance Enhancement Strategies for Adsorbents[J]. Journal of Petrochemical Universities, 2023, 36(6): 24-35.
白雪, 潘建明. 吸附法提铀及提铀吸附剂的种类和性能强化策略[J]. 石油化工高等学校学报, 2023, 36(6): 24-35.
类型 | 名称 | 吸附条件 | 吸附量/(mg·g-1) | 参考文献 |
---|---|---|---|---|
无机型 | NZVI/TiO2 | m/V=0.2 g/L,pH=7.0,t=2.0 h | 122.30 | [ |
Mn3O4@sepiolite | m=50.0 mg,V=50.0 mL,pH=6.0,t=1.0 h | 85.51 | [ | |
PCNF | m=10.0 mg,V=20.0 mL,pH=6.0,t=2.0 h | 512.80 | [ | |
SrTiO3/TiO2 | m=10.0 mg,V=10.0 mL,pH=4.0,t=3.0 h | 127.10 | [ | |
有机型 | PQAP | m=15.0 mg,V=5.0 L,pH=8.0,t=4.0 h | 559.30 | [ |
CID NFs | m=10.0 mg,V=1.0 L,pH=6.0,t=70.0 h | 342.50 | [ | |
GPNB⁃BT | m=20.0 mg,V=50.0 mL,pH=5.5,t=12.0 h | 170.00 | [ | |
CNFs aerogel | m=5.0 mg,V=100.0 mL,pH=5.0,t=3.0 h | 440.60 | [ | |
SAN⁃NFs | m=20.0 mg,V=100.0 mL,pH=4.0,t=4.5 h | 177.00 | [ | |
PA⁃PAO/CS NFs | m=15.0 mg,V=5.0 L,pH=6.0,t=24.0 h | 913.10 | [ | |
BP@CNF⁃MOF | m=5.0 mg,V=1.0 L,pH=7.0,t=6.0 h | 858.30 | [ | |
PAO/Alg NFs | m=15.0 mg,V=5.0 L,pH=6.0,t=48.0 h | 892.80 | [ | |
PPLA | m=15.0 mg,V=5.0 L,pH=5.0,t=50.0 h | 1 432.00 | [ | |
PP | m=30.0 mg,V=0.5 L,pH=4.0,t=1.0 h | 491.00 | [ | |
SMON⁃PAO | m=10.0 mg,V=5.0 L,pH=7.0,t=30.0 h | 1 089.00 | [ |
Table 1 Nanofiber?based adsorbents and their uranium extraction properties reported in recent years
类型 | 名称 | 吸附条件 | 吸附量/(mg·g-1) | 参考文献 |
---|---|---|---|---|
无机型 | NZVI/TiO2 | m/V=0.2 g/L,pH=7.0,t=2.0 h | 122.30 | [ |
Mn3O4@sepiolite | m=50.0 mg,V=50.0 mL,pH=6.0,t=1.0 h | 85.51 | [ | |
PCNF | m=10.0 mg,V=20.0 mL,pH=6.0,t=2.0 h | 512.80 | [ | |
SrTiO3/TiO2 | m=10.0 mg,V=10.0 mL,pH=4.0,t=3.0 h | 127.10 | [ | |
有机型 | PQAP | m=15.0 mg,V=5.0 L,pH=8.0,t=4.0 h | 559.30 | [ |
CID NFs | m=10.0 mg,V=1.0 L,pH=6.0,t=70.0 h | 342.50 | [ | |
GPNB⁃BT | m=20.0 mg,V=50.0 mL,pH=5.5,t=12.0 h | 170.00 | [ | |
CNFs aerogel | m=5.0 mg,V=100.0 mL,pH=5.0,t=3.0 h | 440.60 | [ | |
SAN⁃NFs | m=20.0 mg,V=100.0 mL,pH=4.0,t=4.5 h | 177.00 | [ | |
PA⁃PAO/CS NFs | m=15.0 mg,V=5.0 L,pH=6.0,t=24.0 h | 913.10 | [ | |
BP@CNF⁃MOF | m=5.0 mg,V=1.0 L,pH=7.0,t=6.0 h | 858.30 | [ | |
PAO/Alg NFs | m=15.0 mg,V=5.0 L,pH=6.0,t=48.0 h | 892.80 | [ | |
PPLA | m=15.0 mg,V=5.0 L,pH=5.0,t=50.0 h | 1 432.00 | [ | |
PP | m=30.0 mg,V=0.5 L,pH=4.0,t=1.0 h | 491.00 | [ | |
SMON⁃PAO | m=10.0 mg,V=5.0 L,pH=7.0,t=30.0 h | 1 089.00 | [ |
名称 | 结构 | 吸附容量/(mg·g-1) | 最佳pH | 参考文献 |
---|---|---|---|---|
3, 5⁃二乙烯基苯腈 | 440.00 | 6.0 | [ | |
4⁃氨基⁃3, 5⁃二乙烯基苯腈 | 580.00 | 6.0 | [ | |
2⁃氨基⁃3, 5⁃二乙烯基苯腈 | 530.00 | 6.0 | [ | |
2⁃(3, 5⁃二乙烯基亚苄基)丙二腈 | 857.00 | 6.0 | [ | |
1⁃(3, 5⁃二溴苄基)⁃1H⁃咪唑⁃4, 5⁃二腈 | 504.00 | 6.0 | [ | |
2, 5⁃二乙烯基对苯二甲腈 | 1 070.00 | 6.0 | [ |
Table 2 Reported monomers designed and synthesized for selective uranium extraction
名称 | 结构 | 吸附容量/(mg·g-1) | 最佳pH | 参考文献 |
---|---|---|---|---|
3, 5⁃二乙烯基苯腈 | 440.00 | 6.0 | [ | |
4⁃氨基⁃3, 5⁃二乙烯基苯腈 | 580.00 | 6.0 | [ | |
2⁃氨基⁃3, 5⁃二乙烯基苯腈 | 530.00 | 6.0 | [ | |
2⁃(3, 5⁃二乙烯基亚苄基)丙二腈 | 857.00 | 6.0 | [ | |
1⁃(3, 5⁃二溴苄基)⁃1H⁃咪唑⁃4, 5⁃二腈 | 504.00 | 6.0 | [ | |
2, 5⁃二乙烯基对苯二甲腈 | 1 070.00 | 6.0 | [ |
1 | 宋学实, 曲微丽, 赵磊, 等. 质子交换膜燃料电池氧还原Pt基催化剂研究进展[J]. 石油化工高等学校学报, 2023, 36(4): 25⁃33. |
SONG X S, QU W L, ZHAO L, et al. Research progress of Pt⁃based catalysts for oxygen reduction in proton exchange membrane fuel cells[J]. Journal of Petrochemical Universities, 2023, 36(4): 25⁃33. | |
2 | 李强, 陈擎, 王继斌, 等. 世界铀资源现状与我国核电发展资源保障的对策建议[J]. 中国矿业, 2023, 32(3): 1⁃9. |
LI Q, CHEN Q, WANG J B, et al. Current situation of uranium resources in the world and suggestions on resource guarantee of nuclear power development in China[J]. China Mining Magazine, 2023, 32(3): 1⁃9. | |
3 | XIE Y, LIU Z Y, GENG Y Y, et al. Uranium extraction from seawater: Material design, emerging technologies and marine engineering[J]. Chemical Society Reviews, 2023, 52(1): 97⁃162. |
4 | 李林蔚, 朱博, 刘秀. 核能在我国清洁低碳能源系统中的战略定位研究[J]. 产业与科技论坛, 2022, 21(15): 12⁃15. |
LI L W, ZHU B, LIU X. Research on the strategic positioning of nuclear energy in China's clean and low carbon energy system[J]. Industrial & Science Tribune, 2022, 21(15): 12⁃15. | |
5 | KUSHWAHA S, PATEL K. Catalyst: Uranium extraction from seawater, a paradigm shift in resource recovery[J]. Chem, 2021, 7(2): 271⁃274. |
6 | 颜新林. 松辽盆地钱家店地区上白垩统辉绿岩特征及铀成矿作用[J]. 东北石油大学学报, 2018, 42(1): 40⁃48. |
YAN X L. Characteristics and uranium mineralization of upper Cretaceous diabase in Qianjiadian area, Songliao basin[J]. Journal of Northeast Petroleum University, 2018, 42(1): 40⁃48. | |
7 | GUO X J, CHEN R R, LIU Q, et al. Superhydrophilic phosphate and amide functionalized magnetic adsorbent: A new combination of anti⁃biofouling and uranium extraction from seawater[J]. Environmental Science: Nano, 2018, 5(10): 2346⁃2356. |
8 | SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435⁃437. |
9 | HAJI M N, DRYSDALE J A, BUESSELER K O, et al. Results of an ocean trial of the symbiotic machine for ocean uranium extraction[J]. Environmental Science & Technology, 2019, 53(4): 2229⁃2237. |
10 | 苏守政, 张杏, 何健, 等. 海水提铀材料制备的综合实验设计与探索[J]. 当代化工研究, 2023(7): 146⁃148. |
SU S Z, ZHANG X, HE J, et al. Comprehensive experimental design and exploration for the preparation of uranium extraction materials from seawater[J]. Modern Chemical Research, 2023(7): 146⁃148. | |
11 | ABNEY C W, MAYES R T, SAITO T, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23): 13935⁃14013. |
12 | DAI S. Catalyst: Challenges in development of adsorbents for recovery of uranium from seawater[J]. Chem, 2021, 7(3): 537⁃539. |
13 | TANG N, LIANG J, NIU C G, et al. Amidoxime⁃based materials for uranium recovery and removal[J]. Journal of Materials Chemistry A, 2020, 8(16): 7588⁃7625. |
14 | 王培松, 于芳, 金宇, 等. 负载型Al(OH)3/SiO2的合成及对铀酰的吸附性能[J]. 辽宁石油化工大学学报, 2018, 38(6): 10⁃16. |
WANG P S, YU F, JIN Y, et al. Synthesis of supported Al(OH)3/SiO2 and its adsorption properties for uranyl[J]. Journal of Liaoning Shihua University, 2018, 38(6): 10⁃16. | |
15 | 朱成朋, 谢水波, 谭文发, 等. Al掺加赤铁矿去除水中U(Ⅵ)的机理研究[J]. 化工环保, 2022, 42(6): 693⁃699. |
ZHU C P, XIE S B, TAN W F, et al. Removal mechanism of U(Ⅵ) from aqueous solution by Al⁃doped hematite[J]. Environmental Protection of Chemical Industry, 2022, 42(6): 693⁃699. | |
16 | 刘泽宇, 谢忆, 王一凡, 等. 海水提铀材料研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 279⁃301. |
LIU Z Y, XIE Y, WANG Y F, et al. Recent advances in sorbent materials for uranium extraction from seawater[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4): 279⁃301. | |
17 | 冯健, 何桂强, 魏艳霞, 等. 海水提铀吸附材料研究进展[J]. 化工新型材料, 2022, 50(3): 1⁃7. |
FENG J, HE G Q, WEI Y X, et al. Research progress on adsorption material for U extraction from seawater[J]. New Chemical Materials, 2022, 50(3): 1⁃7. | |
18 | 黄晨, 毛承凯, 姚运友, 等. 海水提铀用偕胺肟基纤维吸附材料的研究进展[J]. 核化学与放射化学, 2022, 44(3): 246⁃264. |
HUANG C, MAO C K, YAO Y Y, et al. Research progress of amidoxime⁃based fiber for uranium extraction from seawater[J]. Journal of Nuclear and Radiochemistry, 2022, 44(3): 246⁃264. | |
19 | ZHAO Y G, LI J X, ZHAO L P, et al. Synthesis of amidoxime⁃functionalized Fe3O4@SiO2 core⁃shell magnetic microspheres for highly efficient sorption of U(Ⅵ)[J]. Chemical Engineering Journal, 2014, 235: 275⁃283. |
20 | 张建伟, 田波, 李金凤, 等. 偕胺肟基铀吸附材料研究进展[J]. 辐射研究与辐射工艺学报, 2023, 41(1): 1⁃15. |
ZHANG J W, TIAN B, LI J F, et al. Research progress of amidoxime uranium adsorption materials[J]. Journal of Radiation Research and Radiation Processing, 2023, 41(1): 1⁃15. | |
21 | 朱雅静, 徐岩, 简美鹏, 等. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029⁃3048. |
ZHU Y J, XU Y, JIAN M P, et al. Progress of metal⁃organic frameworks for uranium extraction from seawater[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029⁃3048. | |
22 | BAI Z Y, LIU Q, ZHANG H S, et al. Anti⁃biofouling and water⁃stable balanced charged metal organic framework⁃based polyelectrolyte hydrogels for extracting uranium from seawater[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18012⁃18022. |
23 | CUI A Q, WU X Y, YE J B, et al. "Two⁃in⁃one" dual⁃function luminescent MOF hydrogel for onsite ultra⁃sensitive detection and efficient enrichment of radioactive uranium in water[J]. Journal of Hazardous Materials, 2023, 448: 130864. |
24 | CHEN L, HANG J H, CHEN B, et al. Photocatalytic uranium removal from basic effluent by porphyrin⁃Ni COF as the photocatalyst[J]. Chemical Engineering Journal, 2023, 454(Part 3): 140378. |
25 | 宋志强, 王玉高, 张宇姝, 等. 活性炭/金属有机骨架复合吸附材料的制备及其CH4/N2吸附分离性能研究[J]. 低碳化学与化工, 2023, 48(5): 163⁃169. |
SONG Z Q, WANG Y G, ZHANG Y S, et al. Study on preparation of activated carbon/metal⁃organic frameworks composite adsorbent materials and their CH4/N2 adsorption and separation performance[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(5): 163⁃169. | |
26 | BAI C Y, ZHANG M C, LI B, et al. Modifiable diyne⁃based covalent organic framework: A versatile platform for in situ multipurpose functionalization[J]. RSC Advances, 2016, 6(45): 39150⁃39158. |
27 | CHEN Z S, WANG J Y, HAO M J, et al. Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance[J]. Nature Communications, 2023, 14(1): 1106. |
28 | 郭帅帅, 陈锦路, 金梁程龙, 等. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426⁃1436. |
GUO S S, CHEN J L, JIN L C L, et al. Research progress of porous aromatic frameworks based on uranium extraction from seawater[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426⁃1436. | |
29 | LI Z N, MENG Q H, YANG Y J, et al. Constructing amidoxime⁃modified porous adsorbents with open architecture for cost⁃effective and efficient uranium extraction[J]. Chemical Science, 2020, 11(18): 4747⁃4752. |
30 | XU X, YUE Y R, CAI D, et al. Aqueous solution blow spinning of seawater⁃stable polyamidoxime nanofibers from water⁃soluble precursor for uranium extraction from seawater[J]. Small Methods, 2020, 4(12): 2000558. |
31 | ZHAO M, NIU Z W, XU Y, et al. One⁃step electrospinning preparation of magnetic NZVI@TiO2 nanofibers for enhanced immobilization of U(Ⅵ) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(4): 1083⁃1091. |
32 | YIN W, LIU M, CHEN Y Y, et al. Microwave⁃assisted preparation of Mn3O4@sepiolite nanocomposite for highly efficient removal of uranium[J]. Applied Clay Science, 2022, 228: 106597. |
33 | DHANYA V, ARUNRAJ B, RAJESH N. Prospective application of phosphorylated carbon nanofibers with a high adsorption capacity for the sequestration of uranium from ground water[J]. RSC Advances, 2022, 12(21): 13511⁃13522. |
34 | HU L, YAN X W, ZHANG X J, et al. Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers[J]. Applied Surface Science, 2018, 428: 819⁃824. |
35 | LYU H L, HAN Y, ZHANG R, et al. Anti⁃biofouling multi⁃modified chitosan/polyvinylalcohol air⁃blown nanofibers for selective radionuclide capture in wastewater[J]. Separation and Purification Technology, 2022, 303: 122196. |
36 | HUANG C, XU L, XU X, et al. Highly amidoxime utilization ratio of porous poly(cyclic imide dioxime) nanofiber for effective uranium extraction from seawater[J]. Chemical Engineering Journal, 2022, 443: 136312. |
37 | MENG J, LIN X Y, ZHOU J, et al. Preparation of tannin⁃immobilized gelatin/PVA nanofiber band for extraction of uranium (Ⅵ) from simulated seawater[J]. Ecotoxicology and Environmental Safety, 2019, 170: 9⁃17. |
38 | WANG Y, LI Y X, ZHANG Y P, et al. Nanocellulose aerogel for highly efficient adsorption of uranium(Ⅵ) from aqueous solution[J]. Carbohydrate Polymers, 2021, 267: 118233. |
39 | ROSTAMIAN R, FIROUZZARE M, ZAHAKIFAR F. Preparation and evaluation of amidoximated poly(styrene⁃acrylonitrile) nanofibers for uranium adsorption from aqueous solutions[J]. Journal of Polymer Research, 2021, 28(5): 193. |
40 | WANG D, LIU Z, YUE Y, et al. Blow spinning of pre⁃acid⁃activated polyamidoxime nanofibers for efficient uranium adsorption from seawater[J]. Materials Today Energy, 2021, 21: 100735. |
41 | CHEN M W, LIU T, ZHANG X B, et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel[J]. Advanced Functional Materials, 2021, 31(22): 2100106. |
42 | LI Z, YU Z Q, WU Y D, et al. Self⁃sterilizing diblock polycation⁃enhanced polyamidoxime shape⁃stable blow⁃spun nanofibers for high⁃performance uranium capture from seawater[J]. Chemical Engineering Journal, 2020, 390: 124648. |
43 | ASHRAFI F, FIROUZZARE M, AHMADI S J, et al. Preparation and modification of forcespun polypropylene nanofibers for adsorption of uranium(Ⅵ) from simulated seawater[J]. Ecotoxicology and Environmental Safety, 2019, 186: 109746. |
44 | YUAN Y H, ZHAO S L, WEN J, et al. Rational design of porous nanofiber adsorbent by blow⁃spinning with ultrahigh uranium recovery capacity from seawater[J]. Advanced Functional Materials, 2019, 29(2): 1805380. |
45 | YUAN Y H, LIU T T, XIAO J X, et al. DNA nano⁃pocket for ultra⁃selective uranyl extraction from seawater[J]. Nature Communications, 2020, 11(1): 5708. |
46 | ZHANG W H, XU C L, CHE X P, et al. Encapsulating amidoximated nanofibrous aerogels within wood cell tracheids for efficient cascading adsorption of uranium ions[J]. ACS Nano, 2022, 16(8): 13144⁃13151. |
47 | VUKOVIC S, WATSON L A, KANG S O, et al. How amidoximate binds the uranyl cation[J]. Inorganic Chemistry, 2012, 51(6): 3855⁃3859. |
48 | YANG P P, CHEN R R, LIU Q, et al. The efficient immobilization of uranium(Ⅵ) by modified dendritic fibrous nanosilica (DFNS) using mussel bioglue[J]. Inorganic Chemistry Frontiers, 2019, 6(3): 746⁃755. |
49 | CHEN B, HONG S, DAI X, et al. Invivo uranium decorporation by a tailor⁃made hexadentate ligand[J]. Journal of the American Chemical Society, 2022, 144(25): 11054⁃11058. |
50 | SUN Q, AGUILA B, PERMAN J, et al. Bio⁃inspired nano⁃traps for uranium extraction from seawater and recovery from nuclear waste[J]. Nature Communications, 2018, 9(1): 1644. |
51 | SONG Y P, ZHU C J, SUN Q, et al. Nanospace decoration with uranyl⁃specific "hooks" for selective uranium extraction from seawater with ultrahigh enrichment index[J]. ACS Central Science, 2021, 7(10): 1650⁃1656. |
52 | ZHU L E, ZHANG C H, QIN F F, et al. Amidoxime⁃modified hypercrosslinked porous poly(styrene⁃co⁃acrylonitrile) adsorbent with tunable porous structure for extracting uranium efficiently from seawater[J]. Journal of Molecular Liquids, 2022, 368(Part B): 120741. |
53 | GUO X L, SHANG Y, LIANG X L, et al. A comparison of Ni⁃Co layered double oxides with memory effect on recovering U(Ⅵ) from wastewater to hydroxides[J]. Chemical Engineering Journal, 2022, 446(Part 4): 137220. |
54 | OYOLA Y, JANKE C J, DAI S, et al. Synthesis, development, and testing of high⁃surface⁃area polymer⁃based adsorbents for the selective recovery of uranium from seawater[J]. Industrial & Engineering Chemistry Research, 2016, 55(15): 4149⁃4160. |
55 | OMICHI H, KATAKAI A, SUGO T, et al. A new type of amidoxime⁃group⁃containing adsorbent for the recovery of uranium from seawater[J]. Separation Science and Technology, 1985, 20(2/3): 163⁃178. |
56 | YU R, ZHANG X S, LU Y R, et al. Advanced amidoximated polyethylene nanofibrous membranes for practical uranium extraction from seawater[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(37): 12307⁃12318. |
57 | MATYJASZEWSKI K, JO S M, PAIK H J, et al. An investigation into the CuX/2,2′⁃bipyridine (X=Br or Cl) mediated atom transfer radical polymerization of acrylonitrile[J]. Macromolecules, 1999, 32(20): 6431⁃6438. |
58 | CUTHBERT J, WANASINGHE S V, MATYJASZEWSKI K, et al. Are RAFT and ATRP universally interchangeable polymerization methods in network formation?[J]. Macromolecules, 2021, 54(18): 8331⁃8340. |
59 | SAITO T, BROWN S, CHATTERJEE S, et al. Uranium recovery from seawater: Development of fiber adsorbents prepared via atom⁃transfer radical polymerization[J]. Journal of Materials Chemistry A, 2014, 2(35): 14674⁃14681. |
60 | HUANG L, ZHANG L X, HUA D B. Synthesis of polyamidoxime⁃functionalized nanoparticles for uranium(Ⅵ) removal from neutral aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305(2): 445⁃453. |
61 | XU X, XU L, AO J X, et al. Ultrahigh and economical uranium extraction from seawater via interconnected open⁃pore architecture poly(amidoxime) fiber[J]. Journal of Materials Chemistry A, 2020, 8(42): 22032⁃22044. |
62 | XU X, ZHANG H J, AO J X, et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(6): 1979⁃1988. |
63 | HIROTSU T, KATOH S, SUGASAKA K, et al. Adsorption of uranium on cross⁃linked amidoxime polymer from seawater[J]. Industrial & Engineering Chemistry Research, 1987, 26(10): 1970⁃1977. |
[1] | Ruijuan LIU, Lan YANG, Shiyu MIAO, Yanhong LI, Xiaoqiang AN, Huachun LAN. Performance Study of Carbon Adsorption of Spent Membranes for the Removal of Typical Pollutants in Wastewater [J]. Journal of Petrochemical Universities, 2024, 37(2): 1-8. |
[2] | Ruiming YANG, Yani TANG, Jingwen LI, Chao FEI, Bo WANG. Study the Adsorption of Nitrate in Water by Cobalt⁃Iron Layered Bimetal⁃Loaded Biochar [J]. Journal of Petrochemical Universities, 2024, 37(2): 16-23. |
[3] | Qiang Wei, Shaopeng Liu, Chao Xu, Jing Wang, Jun Li. Synthesis and Application of a Novel Polyurethane Demulsifier [J]. Journal of Petrochemical Universities, 2023, 36(4): 75-80. |
[4] | Xiang Wang, Jinhui Gu, Qing Liu, Zhaoyang Fei, Xian Chen, Mifen Cui, Xu Qiao. Study on Shaped Activated Carbon from Catechol Rectification Residue [J]. Journal of Petrochemical Universities, 2023, 36(3): 66-73. |
[5] | Siwei Zhao, Gang Fu, Wenqing Zhen, Li Yang. First⁃Principle Studies on the Photocatalytic Properties of Nb2C and Ni⁃Functionalized Materials [J]. Journal of Petrochemical Universities, 2022, 35(5): 46-53. |
[6] | Mengyao Tang, Tianyi Sun, Jiashu Li, Yan Ding, Jinlong Li. Molecular Simulation of Hydrogen Adsorption Performance in Graphene and Carbon Nanotubes [J]. Journal of Petrochemical Universities, 2022, 35(4): 10-17. |
[7] | Yue Fu, Yiheng Xu, Jun Duan, Miaomiao Tian, Liangjun Li, Shujun Chen, Xuebo Zhao. Dynamic Penetration Experimental Investigation on the Removal of CO2 from Offshore Natural Gas by Adsorption Method [J]. Journal of Petrochemical Universities, 2022, 35(4): 26-32. |
[8] | Mengshuang Zhu, Genxiang Luo, Lingzi Xu, Donghao Lin, Jin Huang, Mingyu Qi. Study on the Adsorption of Asphaltenes and Their Sub⁃Components by Mg⁃Al⁃LDH in Tahe [J]. Journal of Petrochemical Universities, 2022, 35(3): 10-15. |
[9] | Dan Ai, Taiqing Wei, Yang Meng, Yi Gao, Weiyu Luan, Bo Wang. Study on Adsorptionzero Effect of Zero⁃Valent Iron/Cationic Surfactant/Biochar on Cr(VI) [J]. Journal of Petrochemical Universities, 2022, 35(3): 54-62. |
[10] | Guanglin Zhou, Zhao Zhang, Shicheng Liu, Qin Li, Fengyun Bi, Xiucheng Guo, Yue Zhang. Preparation and Application of Activated Carbon Based Cu⁃Cr Adsorbent in Removing COS [J]. Journal of Petrochemical Universities, 2022, 35(1): 56-62. |
[11] | Zhang Xiaoxin1, HuaYahui,Dong Haojie, Li Penghui, Ju Jia, Feng Ruijiang, Zhang Lunan. Recycling C2H6+C2H4 from the Refinery Dry Gas by ZIF⁃8 [J]. Journal of Petrochemical Universities, 2021, 34(2): 35-41. |
[12] | Lü Manli, Gong Xun, Qin Yucai, Zhang Xiaotong, Song Lijuan. In⁃Situ Infrared Diffuse Reflectance Spectrum of CO Adsorbed on Pd⁃Ag/Al2O3 Catalysts [J]. Journal of Petrochemical Universities, 2020, 33(6): 8-12. |
[13] | Cui Shiqiang, Yan Feng, Shao Wenjun, Wang Xindong, Zhang Baihui. Metal Modified 13X Molecular Sieve and Adsorption Dechlorination of Naphtha [J]. Journal of Petrochemical Universities, 2020, 33(2): 7-11. |
[14] | Yan Xiaoyu,Luo Genxiang,Ma Cheng. A Novel Resin for the Treatment of Low⁃Concentration Petrochemical Wastewater [J]. Journal of Petrochemical Universities, 2019, 32(6): 33-38. |
[15] | The Effect of Solvent pH Value on Acid Active Site Construction and Desulfurization Performance of Ce?SBA?15 Desulfurization Adsorbent. The Effect of Solvent pH Value on Acid Active Site Construction and Desulfurization Performance of Ce⁃SBA⁃15 Desulfurization Adsorbent [J]. Journal of Petrochemical Universities, 2019, 32(5): 14-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Petrochemical Universities
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56860967 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.