1 |
WANG D B,JIA F Y,WANG H,et al.Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe⁃based MOFs[J].Journal of Colloid and Interface Science,2018,519:273⁃284.
|
2 |
LIU Y,KONG J J,YUAN J L,et al.Enhanced photocatalytic activity over flower⁃like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation[J].Chemical Engineering Journal,2018,331:242⁃254.
|
3 |
WANG Q,LI X N,YANG Q X,et al.Evolution of microbial community and drug resistance during enrichment of tetracycline⁃degrading bacteria[J].Ecotoxicology and Environmental Safety,2019,171:746⁃752.
|
4 |
XIE Z J,FENG Y P,WANG F L,et al.Construction of carbon dots modified MoO3/g⁃C3N4 Z⁃scheme photocatalyst with enhanced visible⁃light photocatalytic activity for the degradation of tetracycline[J].Applied Catalysis B:Environmental,2018,229:96⁃104.
|
5 |
JI L L,WAN Y Q,ZHENG S R,et al.Adsorption of tetracycline and sulfamethoxazole on crop residue⁃derived ashes:Implication for the relative importance of black carbon to soil sorption[J].Environmental Science & Technology,2011,45(13):5580⁃5586.
|
6 |
ZHANG Y,ZHOU J B,CHEN X,et al.Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe⁃based MOFs:Synergistic effect and degradation pathway[J].Chemical Engineering Journal,2019,369:745⁃757.
|
7 |
LI Z L,GUO C S,LYU J C,et al.Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite:Efficiency,stability,mechanism and degradation pathway[J].Journal of Hazardous Materials,2019,373:85⁃96.
|
8 |
WANG Z X,WANG Y X,HUANG L H,et al.La2Zr2O7/rGO synthesized by one⁃step sol⁃gel method for photocatalytic degradation of tetracycline under visible⁃light[J].Chemical Engineering Journal,2020,384:123380.
|
9 |
王翔,顾金辉,刘清,等.苯二酚精馏釜残成型活性炭的研究[J].石油化工高等学校学报,2023,36(3):66⁃73.
|
|
WANG X,GU J H,LIU Q,et al.Study on shaped activated carbon from catechol rectification residue[J].Journal of Petrochemical Universities,2023,36(3):66⁃73.
|
10 |
XU D M,XIAO Y P,PAN H,et al.Toxic effects of tetracycline and its degradation products on freshwater green algae[J].Ecotoxicology and Environmental Safety,2019,174:43⁃47.
|
11 |
HUSSEIN F H,ALKHATEEB A N.Photo⁃oxidation of benzyl alcohol under natural weathering conditions[J].Desalination,2007,209(1/3):350⁃355.
|
12 |
KUBACKA A,FERNÁNDEZ⁃GARCÍA M,COLÓN G.Advanced nanoarchitectures for solar photocatalytic applications[J].Chemical Reviews,2012,112(3):1555⁃1614.
|
13 |
BERTOLINI G R,PIZZIO L R,KUBACKA A,et al.Composite H3PW12O40⁃TiO2 catalysts for toluene selective photo⁃oxidation[J].Applied Catalysis B:Environmental,2018,225:100⁃109.
|
14 |
TONG H,OUYANG S X,BI Y P,et al.Nano⁃photocatalytic materials:Possibilities and challenges[J].Advanced Materials,2012,24(2):229⁃251.
|
15 |
张爱红,杨勇,何安帮,等.双金属ZIF衍生的ZnxCoy/N⁃C催化剂及其高效电催化还原CO2制CO的性能研究[J].低碳化学与化工,2023,48(3):62⁃68.
|
|
ZHANG A H,YANG Y,HE A B,et al.Study on bimetallic ZIF⁃derived ZnxCoy/N⁃C catalyst and its high efficiency electrocatalytic reduction of CO2 to CO[J].Low⁃Carbon Chemistry and Chemical Engineering,2023,48(3):62⁃68.
|
16 |
张丽红,蔡雅晴.水热法合成Bi4Ti3O12/BiOI复合光催化剂对罗丹明B催化活性研究[J].当代化工,2022,51(6):1392⁃1396.
|
|
ZHANG L H,CAI Y Q.Study on the catalytic activity of Bi4Ti3O12⁃BiOI composite photocatalyst synthesized by hydrothermal method for rhodamine B degradation[J].Contemporary Chemical Industry,2022,51(6):1392⁃1396.
|
17 |
忻睦迪,邢恩会,欧阳颖,等.Zn/ZSM⁃5中Zn的赋存状态对其催化性能的影响[J].石油炼制与化工,2019,50(12):42⁃50.
|
|
XIN M D,XING E H,OUYANG Y,et al.Influence of status of Zn species in Zn/ZSM⁃5 on its catalytic performance[J].Petroleum Processing and Petrochemicals,2019,50(12):42⁃50.
|
18 |
任翔宇,陈宝宽,孙京,等.双多酸基金属有机框架材料的合成及其光催化降解性能[J].辽宁石油化工大学学报,2023,43(4):51⁃58.
|
|
REN X Y,CHEN B K,SUN J,et al.Double polyoxometalates⁃based metal⁃organic framework with photocatalytic degradation properties[J].Journal of Liaoning Petrochemical University,2023,43(4):51⁃58.
|
19 |
ZHANG Y,ZHOU J B,CHEN X,et al.MOF⁃derived C⁃doped ZnO composites for enhanced photocatalytic performance under visible light[J].Journal of Alloys and Compounds,2019,777:109⁃118.
|
20 |
LIN B Y,LI S S,PENG Y N,et al.MOF⁃derived core/shell C⁃TiO2/CoTiO3 type Ⅱ heterojunction for efficient photocatalytic removal of antibiotics[J].Journal of Hazardous Materials,2021,406:124675.
|
21 |
HE F,CHEN G,ZHOU Y S,et al.ZIF⁃8 derived carbon (C⁃ZIF) as a bifunctional electron acceptor and HER cocatalyst for g⁃C3N4:Construction of a metal⁃free,all carbon⁃based photocatalytic system for efficient hydrogen evolution[J].Journal of Materials Chemistry A,2016,4(10):3822⁃3827.
|
22 |
CHEN F,YANG Q,WANG Y L,et al.Efficient construction of bismuth vanadate⁃based Z⁃scheme photocatalyst for simultaneous Cr(Ⅵ) reduction and ciprofloxacin oxidation under visible light:Kinetics,degradation pathways and mechanism[J].Chemical Engineering Journal,2018,348:157⁃170.
|
23 |
GUO Y,AO Y H,WANG P F,et al.Mediator⁃free direct dual⁃Z⁃scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible⁃light⁃driven performance towards carbamazepine degradation[J].Applied Catalysis B:Environmental,2019,254:479⁃490.
|
24 |
WANG G L,CHEN S,QUAN X,et al.Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants[J].Carbon,2017,115:730⁃739.
|
25 |
SALIBA D,AMMAR M,RAMMAL M,et al.Crystal growth of ZIF⁃8,ZIF⁃67,and their mixed⁃metal derivatives[J].Journal of the American Chemical Society,2018,140(5):1812⁃1823.
|
26 |
LIU C A,FU Y J,ZHAO J,et al.All⁃solid⁃state Z⁃scheme system of NiO/CDs/BiVO4 for visible light⁃driven efficient overall water splitting[J].Chemical Engineering Journal,2019,358:134⁃142.
|
27 |
LIU Q,CAO F R,WU F L,et al.Interface reacted ZnFe2O4 on α⁃Fe2O3 nanoarrays for largely improved photoelectro⁃chemical activity[J].RSC Advances,2015,5(97):79440⁃79446.
|
28 |
WANG S,ZHU B C,LIU M J,et al.Direct Z⁃scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2⁃production activity[J].Applied Catalysis B:Environmental,2019,243:19⁃26.
|
29 |
WANG Y T,ZHU C Z,ZUO G C,et al.0D/2D Co3O4/TiO2 Z⁃Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation[J].Applied Catalysis B:Environmental,2020,278:119298.
|
30 |
CHEN Y,WANG L,GAO R J,et al.Polarization⁃enhanced direct Z⁃scheme ZnO⁃WO3⁃ x nanorod arrays for efficient piezoelectric⁃photoelectrochemical water splitting[J].Applied Catalysis B:Environmental,2019,259:118079.
|
31 |
YANG K,YAN Y,WANG H Y,et al.Monodisperse Cu/Cu2O@C core⁃shell nanocomposite supported on rGO layers as an efficient catalyst derived from a Cu⁃based MOF/GO structure[J].Nanoscale,2018,10(37):17647⁃17655.
|
32 |
WANG S Y,DING X,ZHANG X H,et al.In situ carbon homogeneous doping on ultrathin Bismuth molybdate:A dual⁃purpose strategy for efficient molecular oxygen activation[J].Advanced Functional Materials,2017,27(47):1703923.
|
33 |
LI H F,YU H T,QUAN X,et al.Uncovering the key role of the fermi level of the electron mediator in a Z⁃Scheme photocatalyst by detecting the charge transfer process of WO3⁃metal⁃g⁃C3N4(metal=Cu,Ag,Au)[J].ACS Applied Materials & Interfaces,2016,8(3):2111⁃2119.
|