1 |
ZHAO J, ZHANG Y Z, CHEN J Y, et al. Codoped holey graphene aerogel by selective etching for high⁃performance sodium⁃ion storage[J]. Advanced Energy Materials, 2020, 10(18): 2000099.
|
2 |
张利星, 张熊, 李晨, 等. 煤基碳负极材料在锂离子电池中的应用研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 10⁃18.
|
|
ZHANG L X, ZHANG X, LI C, et al. Research progress of application of coal⁃based carbon anode materials in lithium⁃ion batteries[J]. Journal of Petrochemical Universities, 2022, 35(6): 10⁃18.
|
3 |
高洁, 唐善法, 郭海莹, 等. 石油污染土壤处理新技术——植物型微生物燃料电池的适用性[J]. 油田化学, 2023, 40(2): 350⁃355.
|
|
GAO J, TANG S F, GUO H Y, et al. Applicability of new technology for treatment of oil contaminated soil-plant⁃based microbial fuel cell[J]. Oilfield Chemistry, 2023, 40(2): 350⁃355.
|
4 |
LI F, ZHOU Z. Micro/nanostructured materials for sodium ion batteries and capacitors[J]. Small, 2018, 14(6): 1702961.
|
5 |
NAYAK P K, YANG L T, BREHM W, et al. From lithium⁃ion to sodium⁃ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102⁃120.
|
6 |
黄任枢, 姚金环, 梁晓丽, 等. 均相沉淀法制备Ni/Al⁃LDHs/rGO复合电极材料的电化学性能[J]. 辽宁石油化工大学学报, 2020, 40(4): 80⁃86.
|
|
HUANG R S, YAO J H, LIANG X L, et al. Electrochemical performances of Ni/Al⁃LDHs/rGO composites prepared by homogeneous precipitation method[J]. Journal of Liaoning Shihua University, 2020, 40(4): 80⁃86.
|
7 |
WEN Y, HE K, ZHU Y J, et al. Expanded graphite as superior anode for sodium⁃ion batteries[J]. Nature Communications, 2014, 5(1): 4033.
|
8 |
ZHAO J, ZHANG Y Z, ZHANG F, et al. Partially reduced holey graphene oxide as high performance anode for sodium⁃ion batteries[J]. Advanced Energy Materials, 2019, 9(7): 1803215.
|
9 |
王宝辉, 陈颖. 电池新技术的发展与应用[J]. 大庆石油学院学报, 2001, 25(1): 24⁃29.
|
|
WANG B H, CHEN Y. Development and application of battery technology[J]. Journal of Daqing Petroleum Institute, 2001, 25(1): 24⁃29.
|
10 |
WANG Y X, CHOU S L, LIU H K, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57: 202⁃208.
|
11 |
YANG D X, VELAMAKANNI A, BOZOKLU G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X⁃ray photoelectron and micro⁃raman spectroscopy[J]. Carbon, 2009, 47(1): 145⁃152.
|
12 |
LUO W, BOMMIER C, JIAN Z L, et al. Low⁃surface⁃area hard carbon anode for na⁃ion batteries via graphene oxide as a dehydration agent[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2626⁃2631.
|
13 |
YAN Y, YIN Y X, GUO Y G, et al. A sandwich⁃like hierarchically porous carbon/graphene composite as a high⁃performance anode material for sodium⁃ion batteries[J]. Advanced Energy Materials, 2014, 4(8): 1301584.
|
14 |
CAO Y L, XIAO L F, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783⁃3787.
|
15 |
ZHAO J P, PEI S F, REN W C, et al. Efficient preparation of large⁃area graphene oxide sheets for transparent conductive films[J]. ACS Nano, 2010, 4(9): 5245⁃5252.
|
16 |
PEI S F, CHENG H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9): 3210⁃3228.
|
17 |
LIU X X, WANG T, JI T Y, et al. Using machine learning to screen non⁃graphite carbon materials based on Na⁃ion storage properties[J]. Journal of Materials Chemistry A, 2022, 10(14): 8031⁃8046.
|
18 |
DAVID L, SINGH G. Reduced graphene oxide paper electrode: Opposing effect of thermal annealing on Li and Na cyclability[J]. The Journal of Physical Chemistry C, 2014, 118(49): 28401⁃28408.
|
19 |
MURILLO LEO I, SOTO E, VAQUERO F, et al. Influence of the reduction of graphene oxide (rGO) on the structure and photoactivity of CdS⁃rGO hybrid systems[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13691⁃13703.
|
20 |
THAKUR A K, AHMED M S, OH G, et al. Advancement in graphene⁃based nanocomposites as high capacity anode materials for sodium⁃ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(5): 2628⁃2661.
|
21 |
ZHENG G Y, LIN Q W, MA J B, et al. Ultrafast presodiation of graphene anodes for high⁃efficiency and high⁃rate sodium⁃ion storage[J]. Infomat, 2021, 3(12): 1445⁃1454.
|
22 |
ZHANG H, LUO N, LIU T L, et al. Light⁃weight, low⁃loading and large⁃sheet reduced graphene oxide for high⁃efficiency microwave absorber[J]. Carbon, 2022, 196: 1024⁃1034.
|
23 |
WAN J Y, SHEN F, LUO W, et al. In situ transmission electron microscopy observation of sodiation⁃desodiation in a long cycle, high⁃capacity reduced graphene oxide sodium⁃ion battery anode[J]. Chemistry of Materials, 2016, 28(18): 6528⁃6535.
|
24 |
MAHMOOD A, YUAN Z W, SUI X, et al. Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium⁃ion batteries[J]. Energy Storage Materials, 2021, 41: 395⁃403.
|
25 |
ZHANG J, WANG D W, LV W, et al. Achieving superb sodium storage performance on carbon anodes through an ether⁃derived solid electrolyte interphase[J]. Energy & Environmental Science, 2017, 10(1): 370⁃376.
|
26 |
HE T Q, KANG X Y, WANG F J, et al. Capacitive contribution matters in facilitating high power battery materials toward fast⁃charging alkali metal ion batteries[J]. Materials Science and Engineering R: Reports, 2023, 154: 100737.
|