Journal of Petrochemical Universities ›› 2023, Vol. 36 ›› Issue (5): 52-59.DOI: 10.12422/j.issn.1006-396X.2023.05.007
• Alternative Fuels and New Materials • Previous Articles Next Articles
Jiale WANG(), Hongda WU, Qiao HAN, Zhanxu YANG()
Received:
2023-03-15
Revised:
2023-05-15
Published:
2023-10-25
Online:
2023-11-06
Contact:
Zhanxu YANG
通讯作者:
杨占旭
作者简介:
王佳乐(1997⁃),男,硕士研究生,从事新型储能材料方面的研究;E⁃mail:494693570@qq.com。
基金资助:
CLC Number:
Jiale WANG, Hongda WU, Qiao HAN, Zhanxu YANG. Research Progress in Preparation of Molybdenum⁃Based Quantum Dots[J]. Journal of Petrochemical Universities, 2023, 36(5): 52-59.
王佳乐, 武宏大, 韩乔, 杨占旭. 钼基量子点制备的研究进展[J]. 石油化工高等学校学报, 2023, 36(5): 52-59.
1 | XU Y, GE R Y, YANG J, et al. Molybdenum disulfide (MoS2)⁃based electrocatalysts for hydrogen evolution reaction⁃from mechanism to manipulation[J]. Journal of Energy Chemistry, 2022, 74: 45⁃71. |
2 | GE H, KUWAHARA Y, YAMASHITA H. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis[J]. Chemical Communications, 2022, 58(61): 8466⁃8479. |
3 | ABDOLAHI B, GHOLIVAND M B, SHAMSIPUR M, et al. Ordered mesoporous carbon/molybdenum carbide nanocomposite with high electrochemical performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds, 2022, 905: 164185. |
4 | TIAN L, LI Z, WANG P, et al. Carbon quantum dots for advanced electrocatalysis[J]. Journal of Energy Chemistry, 2021, 55: 279⁃294. |
5 | 余志超, 汤振国, 张楠, 等. CdS量子点修饰TiO2纳米管及光解水产氢性能研究[J]. 石油化工高等学校学报, 2022, 35(4): 38⁃45. |
YU Z C, TANG Z G, ZHANG N, et al. TiO2 nanotubes modified by CdS quantum dots and performance of photocatalytic water splitting for hydrogen[J]. Journal of Petrochemical Universities, 2022, 35(4): 38⁃45. | |
6 | GAURAV A, JAIN A, TRIPATHI S K. Review on fluorescent carbon/graphene quantum dots: Promising material for energy storage and next⁃generation light⁃emitting diodes[J]. Materials, 2022, 15(22): 7888. |
7 | CHI W G, BANERJEE S K. Application of perovskite quantum dots as an absorber in perovskite solar cells[J]. Angewandte Chemie International Edition, 2022, 61(9): e202112412. |
8 | PERMATASARI F A, IRHAM M A, BISRI S Z, et al. Carbon⁃based quantum dots for supercapacitors: Recent advances and future challenges[J]. Nanomaterials, 2021, 11(1): 91. |
9 | KAUR A, PANDEY K, KAUR R, et al. Nanocomposites of carbon quantum dots and graphene quantum dots: Environmental applications as sensors[J]. Chemosensors, 2022, 10(9): 367. |
10 | ZHENG X T, ANANTHANARAYANAN A, LUO K Q, et al. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications[J]. Small, 2015, 11(14): 1620⁃1636. |
11 | HALDAR D, DINDA D, SAHA S K. High selectivity in water soluble MoS2 quantum dots for sensing nitro explosives[J]. Journal of Materials Chemistry C, 2016, 4(26): 6321⁃6326. |
12 | LIN H H, WANG C X, WU J P, et al. Colloidal synthesis of MoS2 quantum dots: Size⁃dependent tunable photoluminescence and bioimaging[J]. New Journal of Chemistry, 2015, 39(11): 8492⁃8497. |
13 | DAI W H, DONG H F, ZHANG X J. A semimetal⁃like molybdenum carbide quantum dots photoacoustic imaging and photothermal agent with high photothermal conversion efficiency[J]. Materials, 2018, 11(9): 1776. |
14 | MAO B G, BAO T, YU J, et al. One⁃pot synthesis of MoSe2 hetero⁃dimensional hybrid self⁃assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy[J]. Nano Research, 2017, 10(8): 2667⁃2682. |
15 | WANG N, TANG D Y, ZOU H Y, et al. Synthesis of molybdenum oxide quantum dots with better dispersity and bio⁃imaging ability by reduction method[J]. Optical Materials, 2018, 83: 19⁃27. |
16 | KANG H, LEE T, PARK Y, et al. Colloidal synthetic methods of amorphous molybdenum phosphide nanoparticles for hydrogen evolution reaction catalysts[J]. Korean Journal of Chemical Engineering, 2020, 37(8): 1419⁃1426. |
17 | KIM M, PARK Y, LEE T, et al. Transition⁃metal⁃incorporated molybdenum phosphide nanocatalysts synthesized through post⁃synthetic transformation for the hydrogen evolution reaction[J]. International Journal of Energy Research, 2022, 46(12): 17668⁃17681. |
18 | MCENANEY J M, CROMPTON J C, CALLEJAS J F, et al. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution[J]. Chemistry of Materials, 2014, 26(16): 4826⁃4831. |
19 | NKABINDE S S, NDALA Z B, SHUMBULA N P, et al. Delineating the role of crystallinity in the electrocatalytic activity of colloidally synthesized MoP nanocrystals[J]. New Journal of Chemistry, 2020, 44(33): 14041⁃14049. |
20 | ALI L, SUBHAN F, AYAZ M, et al. Exfoliation of MoS2 quantum dots: Recent progress and challenges[J]. Nanomaterials, 2022, 12(19): 3465. |
21 | GUO Y M, LI J W. MoS2 quantum dots: Synthesis, properties and biological applications[J]. Materials Science and Engineering C, 2020, 109: 110511. |
22 | DHANABALAN S C, DHANABALAN B, PONRAJ J S, et al. 2D⁃materials⁃based quantum dots: Gateway towards next⁃generation optical devices[J]. Advanced Optical Materials, 2017, 5(19): 1700257. |
23 | ARUL N S, NITHYA V D. Molybdenum disulfide quantum dots: Synthesis and applications[J]. RSC Advances, 2016, 6(70): 65670⁃65682. |
24 | HUANG H, DU C C, SHI H Y, et al. Water⁃soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence[J]. Particle & Particle Systems Characterization, 2015, 32(1): 72⁃79. |
25 | GAO W Y, WANG M Q, RAN C X, et al. Facile one⁃pot synthesis of MoS2 quantum dots⁃graphene⁃TiO2 composites for highly enhanced photocatalytic properties[J]. Chemical Communications, 2015, 51(9): 1709⁃1712. |
26 | WANG X J, WU Q, JIANG K L, et al. One⁃step synthesis of water⁃soluble and highly fluorescent MoS2 quantum dots for detection of hydrogen peroxide and glucose[J]. Sensors and Actuators B: Chemical, 2017, 252: 183⁃190. |
27 | MUSCUSO L, CRAVANZOLA S, CESANO F, et al. Optical, vibrational, and structural properties of MoS2 nanoparticles obtained by exfoliation and fragmentation via ultrasound cavitation in isopropyl alcohol[J]. The Journal of Physical Chemistry C, 2015, 119(7): 3791⁃3801. |
28 | WANG T Y, LIU L, ZHU Z W, et al. Enhanced electrocatalytic activity for hydrogen evolution reaction from self⁃assembled monodispersed molybdenum sulfidenanoparticles on an Au electrode[J]. Energy & Environmental Science, 2013, 6(2): 625⁃633. |
29 | NGUYEN T P, SOHN W, OH J H, et al. Size⁃dependent properties of two⁃dimensional MoS2 and WS2[J]. The Journal of Physical Chemistry C, 2016, 120(18): 10078⁃10085. |
30 | LU X L, WANG R G, HAO L F, et al. Oxidative etching of MoS2/WS2 nanosheets to their QDs by facile UV irradiation[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 31211⁃31216. |
31 | DONG L, LIN S, YANG L, et al. Spontaneous exfoliation and tailoring of MoS2 in mixed solvents[J]. Chemical Communications, 2014, 50(100): 15936⁃15939. |
32 | GOPALAKRISHNAN D, DAMIEN D, LI B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chemical Communications, 2015, 51(29): 6293⁃6296. |
33 | LI B L, CHEN L X, ZOU H L, et al. Electrochemically induced Fenton reaction of few⁃layer MoS2 nanosheets: Preparation of luminescent quantum dots via a transition of nanoporous morphology[J]. Nanoscale, 2014, 6(16): 9831⁃9838. |
34 | HAN C C, ZHANG Y, GAO P, et al. High⁃yield production of MoS2 and WS2 quantum sheets from their bulk materials[J]. Nano Letters, 2017, 17(12): 7767⁃7772. |
35 | LI F, LI J, CAO Z, et al. MoS2 quantum dot decorated RGO: A designed electrocatalyst with high active site density for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2015, 3(43): 21772⁃21778. |
36 | BABY M, KUMAR K R. Synthesis and characterisation of MoS2 quantum dots by liquid nitrogen quenching[J]. Materials Science and Technology, 2019, 35(12): 1416⁃1427. |
37 | WANG Y, LIU Y, ZHANG J F, et al. Cryo⁃mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Science Advances, 2017, 3(12): e1701500. |
38 | ZHOU K, ZHANG Y, XIA Z N, et al. As⁃prepared MoS2 quantum dot as a facile fluorescent probe for long⁃term tracing of live cells[J]. Nanotechnology, 2016, 27(27): 275101. |
39 | DONG H F, TANG S S, HAO Y S, et al. Fluorescent MoS2 quantum dots: Ultrasonic preparation, up⁃conversion and down⁃conversion bioimaging, and photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3107⁃3114. |
40 | HA H D, HAN D J, CHOI J S, et al. Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon[J]. Small, 2014, 10(19): 3858⁃3862. |
41 | DAI W H, DONG H F, FUGETSU B, et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging[J]. Small, 2015, 11(33): 4158⁃4164. |
42 | CAO H Y, TANG M J, WANG X, et al. Facile and rapid synthesis of emission color⁃tunable molybdenum oxide quantum dots as a versatile probe for fluorescence imaging and environmental monitoring[J]. Analyst, 2020, 145(19): 6270⁃6276. |
43 | WANG C D, JIANG J J, RUAN Y J, et al. Construction of MoO2 quantum dot⁃graphene and MoS2 nanoparticle⁃graphene nanoarchitectures toward ultrahigh lithium storage capability[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28441⁃28450. |
44 | XU Y, YI R, YUAN B, et al. High capacity MoO2/graphite oxide composite anode for lithium⁃ion batteries[J]. The Journal of Physical Chemistry Letters, 2012, 3(3): 309⁃314. |
45 | LIU X H, YIN Y X, DU F, et al. In situ synthesis of ultrafine metallic MoO2/carbon nitride nanosheets for efficient photocatalytic hydrogen generation: A prominent cocatalytic effect[J]. Catalysis Science & Technology, 2020, 10(12): 4053⁃4060. |
46 | CAO H Y, HU X, SHI W B, et al. pH⁃regulated reversible photoluminescence and localized surface plasmon resonances arising from molybdenum oxide quantum dot[J]. Applied Materials Today, 2020, 18: 100516. |
47 | XIAO S J, ZHAO X J, HU P P, et al. Highly photoluminescent molybdenum oxide quantum dots: One⁃pot synthesis and application in 2,4,6⁃trinitrotoluene determination[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 8184⁃8191. |
48 | XIAO S J, ZHAO X J, ZUO J, et al. Highly photoluminescent MoOx quantum dots: Facile synthesis and application in off⁃on Pi sensing in lake water samples[J]. Analytica Chimica Acta, 2016, 906: 148⁃155. |
49 | ZHANG Z Y, YANG Z L, CHEN X Y, et al. Facile gradient oxidation synthesizing of highly⁃fluorescent MoO3 quantum dots for Cr2O 7 2 - trace sensing[J]. Inorganic Chemistry Communications, 2020, 118: 108001. |
50 | TONG W Z, AN Y, BAO C X, et al. Improving mechanical properties of copper composite by interconnected MoO2 quantum dots[J]. Materials Science and Engineering: A, 2022, 848: 143365. |
51 | QI S P, LIU G N, TAN L, et al. Top⁃down fabrication of colloidal plasmonic MoO3- x nanocrystals via solution chemistry hydrogenation[J]. Chemical Communications, 2020, 56(35): 4816⁃4819. |
52 | LU X L, WANG R G, HAO L F, et al. Preparation of quantum dots from MoO3 nanosheets by UV irradiation and insight into morphology changes[J]. Journal of Materials Chemistry C, 2016, 4(48): 11449⁃11456. |
53 | BORAH D J, MOSTAKO A T T, BORGOGOI A T, et al. Modified top⁃down approach for synthesis of molybdenum oxide quantum dots: Sonication induced chemical etching of thin films[J]. RSC Advances, 2020, 10(6): 3105⁃3114. |
54 | BORAH D J, MOSTAKO A T T, MALAKAR A. Tailoring the crystalline phase and size of the MoO3 quantum dots via sonication induced modified top⁃down method[J]. Journal of Alloys and Compounds, 2022, 891: 161870. |
55 | YANG F, LIU D Z, LI Y X, et al. Solid⁃state synthesis of ultra⁃small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production[J]. Chemical Engineering Journal, 2021, 406: 126838. |
56 | WEI M H, LI B, JIN C, et al. A 3D free⁃standing thin film based on N, P⁃codoped hollow carbon fibers embedded with MoP quantum dots as high efficient oxygen electrode for Li⁃O2 batteries[J]. Energy Storage Materials, 2019, 17: 226⁃233. |
57 | ZHANG J L, CHENG Y, CHEN H B, et al. MoP quantum dot⁃modified N,P⁃carbon nanotubes as a multifunctional separator coating for high⁃performance lithium⁃sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16289⁃16299. |
58 | YU B, MA F, CHEN D J, et al. MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li⁃S batteries[J]. Journal of Materials Science & Technology, 2021, 90: 37⁃44. |
59 | HUANG Y, SONG X N, DENG J, et al. Ultra⁃dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis[J]. Applied Catalysis B: Environmental, 2019, 245: 656⁃661. |
60 | JIANG E J, LI J Q, LI X L, et al. MoP⁃Mo2C quantum dot heterostructures uniformly hosted on a heteroatom⁃doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting[J]. Chemical Engineering Journal, 2022, 431(Part 4): 133719. |
61 | YAN Z H, HUANG Z Y, ZHOU H H, et al. Facile fabrication of MoP nanodots embedded in porous carbon as excellent anode material for potassium⁃ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 571⁃578. |
62 | CHEN N N, ZHANG W B, ZENG J C, et al. Plasma⁃engineered MoP with nitrogen doping: Electron localization toward efficient alkaline hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 268: 118441. |
63 | FENG W H, YUAN J, GAO F, et al. Piezopotential⁃driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N⁃doped graphene vesicles for superhigh H2 production from pure water[J]. Nano Energy, 2020, 75: 104990. |
64 | TAN M X, YU C Y, LUAN Q J, et al. The mott⁃schottky heterojunction MoC@NG@ZIS with enhanced kinetic response for promoting photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2022, 10(40): 21465⁃21473. |
65 | LIU J F, WANG P, FAN J J, et al. Hetero⁃phase MoC⁃Mo2C nanoparticles for enhanced photocatalytic H2⁃production activity of TiO2[J]. Nano Research, 2021, 14(4): 1095⁃1102. |
66 | LIU X F, ZHANG X F, DOU Y, et al. Ultrasmall Mo2C nanocrystals embedded in N⁃doped porous carbons as a surface⁃dominated capacitive anode for lithium⁃ion capacitors[J]. Chemical Communications, 2021, 57(40): 4966⁃4969. |
67 | CUI C L, ZHANG G R, YANG Y, et al. Ultra⁃thin carbon bridged MoC quantum dots/g⁃C3N4 with charge⁃transfer⁃reaction highways for boosting photocatalytic hydrogen production[J]. Journal of Alloys and Compounds, 2022, 910: 164864. |
68 | YU B, HUANG A J, CHEN D J, et al. In situ construction of Mo2C quantum dots⁃decorated CNT networks as a multifunctional electrocatalyst for advanced lithium⁃sulfur batteries[J]. Small, 2021, 17(23): e2100460. |
69 | LIN L, SUN Z M, YUAN M W, et al. α⁃MoC1– x quantum dots encapsulated in nitrogen⁃doped carbon for hydrogen evolution reaction at all pH values[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9637⁃9645. |
70 | LÜ Z, TAHIR M, LANG X W, et al. Well⁃dispersed molybdenum nitrides on a nitrogen⁃doped carbon matrix for highly efficient hydrogen evolution in alkaline media[J]. Journal of Materials Chemistry A, 2017, 5(39): 20932⁃20937. |
71 | YUWEN L H, ZHOU J J, ZHANG Y Q, et al. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells[J]. Nanoscale, 2016, 8(5): 2720⁃2726. |
72 | LUAN C Y, XIE S, MA C Y, et al. Elucidation of luminescent mechanisms of size⁃controllable MoSe2 quantum dots[J]. Applied Physics Letters, 2017, 111(7): 073105. |
73 | DHENADHAYALAN N, LIN T W, LEE H L, et al. Multisensing capability of MoSe2 quantum dots by tuning surface functional groups[J]. ACS Applied Nano Materials, 2018, 1(7): 3453⁃3463. (编辑 喻育红) |
[1] | Wenke YANG, Lianxue LU, Peng LI, Jian ZHANG, Shaozheng HU. Synthesis, Modification and Application of Photocatalytic Material Graphite Phase Carbon Nitride [J]. Journal of Petrochemical Universities, 2024, 37(1): 43-51. |
[2] | Jipeng CHEN, Jiazi YANGYANG, Peng LI, Jian ZHANG, Shaozheng HU. Preparation,Modification,and Application of Graphitic Phase Carbon Nitride [J]. Journal of Petrochemical Universities, 2023, 36(5): 45-51. |
[3] | Lei Guan, Xian Chen, Bowen Fan, Yaxu Chen, Pengpeng Yin, Ying Wang. Hydrothermal Synthesis, Crystal Structure and Fluorescence Property of a Tb Coordination Complex [J]. Journal of Petrochemical Universities, 2023, 36(3): 60-65. |
[4] | Zhichao Yu, Zhenguo Tang, Nan Zhang, Zeyue Cui, Linhe Hu, Gang Li. TiO2 Nanotubes Modified by CdS Quantum Dots and Performance of Photocatalytic Water Splitting for Hydrogen [J]. Journal of Petrochemical Universities, 2022, 35(4): 38-45. |
[5] | Chang Lu, Caishun Zhang, Daosheng Liu, Lei Zhang, Zhixian Gao. Design,Preparation and Performance of CuO⁃SiO2⁃CeO2 Catalyst [J]. Journal of Petrochemical Universities, 2022, 35(1): 29-34. |
[6] | Wang Xinbo, Zhao Rongxiang, Li Xiuping, Lin Kehong. Preparation of Rodlike Iron Oxide and Its Modification-Ultrasonic Desulfurization Performance [J]. Journal of Petrochemical Universities, 2018, 31(01): 30-34. |
[7] | Liu Bei, Sun Tie, Jin Chongyang, Yang Xuefeng, Zhang Suxiang, Luo Ming, Zhou Changmao. Effect of Ultrasonic Cavitation on Mixing in Kenics Static Mixer [J]. Journal of Petrochemical Universities, 2018, 31(01): 89-94. |
[8] | Li Chunying, Zhang Zhiquan, Lin Fei, Sheng Ping, Chen Dengya. Fracturing Fluid Prepared with Shallow Formation Water in Gas Fields [J]. Journal of Petrochemical Universities, 2016, 29(4): 43-46. |
[9] | Hu Weiqing, Wu Libao, Huang Wanli, Luo Wangqun. Preparation and Application Evaluation of High Thermal Stability Insoluble Sulfur [J]. Journal of Petrochemical Universities, 2015, 28(4): 18-21. |
[10] | Zhang Jihong, Zhu Ying. Effect of Oxygen Exposure on the Performance of Polymer Solution Diluted by the Polymer Flooding Sewage [J]. Journal of Petrochemical Universities, 2015, 28(1): 46-50. |
[11] | Ji Yanfeng, Zhang Xiangfeng, Hu Leilei. Synthesis of MultiSticker Amphiphilic Polmer and Reseach of Its Emulsifying Property [J]. Journal of Petrochemical Universities, 2015, 28(1): 78-84. |
[12] | LI Wen, ZHENG Kaiyuan,ZOU Jinglun,et al. SnSb Intermetallic Synthesis and Its Desulphurization Performance for HighSulfur Crude Oil [J]. Journal of Petrochemical Universities, 2013, 26(4): 6-10. |
[13] | QIU Lijie,ZHANG Guofu,WANG Wenguang. The Effects of Ultrasonic Oscillation on the Form of Carbon Nanotubes [J]. Journal of Petrochemical Universities, 2013, 26(3): 57-61. |
[14] | ZHENG Liqun,CHEN Qianhuo,LI Qing,et al. The Properties and Synthesis of the Coordinated Europium Oxide Colloids by Colloids Precipitation [J]. Journal of Petrochemical Universities, 2013, 26(2): 5-11. |
[15] | ZHANG Xin-yue, ZHOU Ming-dong, ZANG Shu-liang. Separation and Recovery of Rhenium From Rhenium-Containing Ionic Liquid by Ultrasound Oxidative Digestion [J]. Journal of Petrochemical Universities, 2012, 25(6): 10-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Petrochemical Universities
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56860967 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.