Journal of Petrochemical Universities ›› 2022, Vol. 35 ›› Issue (6): 48-58.DOI: 10.3969/j.issn.1006-396X.2022.06.006
Previous Articles Next Articles
Lin Fan(), Lei Yang, Xiaozhen Che, Duo Li, Liwei Pan, Hexiang Zhong()
Received:
2022-05-18
Revised:
2022-06-06
Published:
2022-12-25
Online:
2023-01-07
Contact:
Hexiang Zhong
通讯作者:
钟和香
作者简介:
范琳(1996‐),女,硕士研究生,从事CO2电化学还原方面的研究;E‐mail:2239195848@qq.com。
基金资助:
CLC Number:
Lin Fan, Lei Yang, Xiaozhen Che, Duo Li, Liwei Pan, Hexiang Zhong. Research Progress of Metal Catalysts for Electrochemical Reduction of CO2 to CO[J]. Journal of Petrochemical Universities, 2022, 35(6): 48-58.
范琳, 杨磊, 车晓甄, 李夺, 潘立卫, 钟和香. CO2电化学还原制CO金属催化剂的研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 48-58.
反应方程式 | 电极电位(vs.NHE)/V |
---|---|
CO2+e-→CO | -1.90 |
CO2+2H++2e-→CO+H2O | -0.53 |
CO2+2H++2e-→HCOOH | -0.61 |
CO2+4H++4e-→HCHO+H2O | -0.48 |
CO2+6H++6e-→CH3OH+H2O | -0.38 |
CO2+8H++8e-→CH4+H2O | -0.24 |
2H++2e-→H2 | -0.41 |
Table 1 ERC cathode reaction and corresponding standard electrode potential
反应方程式 | 电极电位(vs.NHE)/V |
---|---|
CO2+e-→CO | -1.90 |
CO2+2H++2e-→CO+H2O | -0.53 |
CO2+2H++2e-→HCOOH | -0.61 |
CO2+4H++4e-→HCHO+H2O | -0.48 |
CO2+6H++6e-→CH3OH+H2O | -0.38 |
CO2+8H++8e-→CH4+H2O | -0.24 |
2H++2e-→H2 | -0.41 |
jCO | FECO | ||||
---|---|---|---|---|---|
Table 2 Comparison of ERC to CO performance of single metal nanocatalysts
jCO | FECO | ||||
---|---|---|---|---|---|
jCO | FECO | |||||
---|---|---|---|---|---|---|
3.40 | ||||||
Table 3 Comparison of ERC to CO performance of bimetallic catalysts
jCO | FECO | |||||
---|---|---|---|---|---|---|
3.40 | ||||||
jCO | FECO | |||||
---|---|---|---|---|---|---|
Table 4 Comparison of ERC to CO performance of metal?organic complex catalysts
jCO | FECO | |||||
---|---|---|---|---|---|---|
jCO | FECO | |||||
---|---|---|---|---|---|---|
Table 5 Comparison of ERC to CO performance of monoatomic catalysts
jCO | FECO | |||||
---|---|---|---|---|---|---|
1 | NOAA.Trends in atmospheric carbon dioxide/monthly average mauna loa CO2[EB/OL].(2022⁃11⁃15)[2022⁃01⁃05].https://gml.noaa.gov/ccgg/trends/. |
2 | Nandy A,Loha C,Gu S,et al.Present status and overview of chemical looping combustion technology[J].Renewable and Sustainable Energy Reviews,2016,59:597‐619. |
3 | Koytsoumpa E I,Bergins C,Kakaras E.The CO2 economy:Review of CO2 capture and reuse technologies[J].The Journal of Supercritical Fluids,2018,132:3‐16. |
4 | 周宏春.碳达峰碳中和需要创新驱动和技术支撑[J].科技与金融,2021(9):51⁃52. |
Zhou H C.Carbon peaking and carbon neutrality require innovation⁃driven and technological support[J].Sci⁃Tech Finance Monthly,2021(9):51⁃52. | |
5 | Chen W,Filot A W,Pestman R,et al.Mechanism of cobalt⁃catalyzed CO hydrogenation:2.Fischer⁃tropsch synthesis[J].ACS Catalysis,2017,7(12):8061⁃8071. |
6 | 王彦,王晓月,曹瑞文,等.二氧化碳加氢制甲醇反应机理研究进展[J].辽宁石油化工大学学报,2020,40(4):11⁃20. |
Wang Y,Wang X Y,Cao R W,et al.Research progress of reaction mechanism of carbon dioxide hydrogenation to methanol[J].Journal of Liaoning Shihua University,2020,40(4):11⁃20. | |
7 | Melaet G,Ralston W T,Li C S,et al.Evidence of highly active cobalt oxide catalyst for the fischer–tropsch synthesis and CO2 hydrogenation[J].Journal of the American Chemical Society,2014,136(6):2260⁃2263. |
8 | Zhao G,Huang X,Wang X,et al.Progress in catalyst exploration for heterogeneous CO2 reduction and utilization:A critical review[J].Journal of Materials Chemistry A,2017,5(41):21625⁃21649. |
9 | 殷中枢,郭建伟,王博,等.二氧化碳电化学还原催化剂[J].科学技术与工程,2013,13(35):10560⁃10570. |
Yin Z S,Guo J W,Wang B,et al.Catalysts for electrochemical reduction of carbon dioxide[J].Science Technology and Engineering,2013,13(35):10560⁃10570. | |
10 | Zhang S,Fan Q,Xia R,et al.CO2 reduction:From homogeneous to heterogeneous electrocatalysis[J].Accounts of Chemical Research,2020,53(1):255⁃264. |
11 | 周睿,韩娜,李彦光,等.铋基二氧化碳还原电催化材料研究进展[J].电化学,2019,25(4):445⁃454. |
Zhou R,Han N,Li Y G,et al.Recent advances in bismuth⁃based CO2 reduction electrocatalysts[J].Journal of Electrochemistry,2019,25(4):445⁃454. | |
12 | Schneider J,Jia H,Muckerman J T,et al.Thermodynamics and kinetics of CO2,CO,and H+ binding to the metal center of CO2 reduction catalysts[J].Chemical Society Reviews,2012,41(6):2036⁃2651. |
13 | Dang T N,Younghye K,Yun J H,et al.Progress in development of electrocatalyst for CO2 conversion to selective CO production[J].Carbon Energy,2020,2(1):72⁃98. |
14 | Sun Z Y,Ma T,Tao H C,et al.Fundamentals and challenges of electrochemical CO2 reduction using two⁃dimensional materials[J].Chemistry,2017,3(4):560⁃587. |
15 | 郑元波,张前,石坚,等.电催化还原 CO2 生成多种产物催化剂研究进展[J].化工进展,2022,41(3):1209⁃1223. |
Zheng Y B,Zhang Q,Shi J,et al.Research progress of catalysts for electrocatalytic reduction of CO2 to various products[J].Chemical Industry and Engineering Progress,2022,41(3):1209⁃1223. | |
16 | 张钰宁,钮东方,胡硕真,等.基于纳米金属的增强效应在CO2电还原反应中的应用进展[J].电化学,2020,26(4):495⁃509. |
Zhang Y N,Niu D F,Hu S Z,et al.Research progress on enhancing effect of nanosized metals for electrochemical CO2 reduction[J].Journal of Electrochemistry,2020,26(4):495⁃509. | |
17 | Mahyoub S A,Qaraah F A,Chen C,et al.An overview on the recent developments of Ag⁃based electrodes in the electrochemical reduction of CO2 to CO[J].Sustainable Energy & Fuels,2020,4(1):50⁃67. |
18 | Gao D,Zhou H,Wang J,et al.Size⁃dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J].Journal of the American Chemical Society,2015,137(13):4288⁃4291. |
19 | Mistry H,Reske R,Zeng Z,et al.Exceptional size⁃dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles[J].Journal of the American Chemical Society,2014,136(47):16473⁃16476. |
20 | Yang D R,Liu L,Zhang Q,et al.Importance of Au nanostructures in CO2 electrochemical reduction reaction[J].Science Bulletin,2020,65(10):796⁃802. |
21 | Liu S,Sun C,Xiao J,et al.Unraveling structure sensitivity in CO2 electroreduction to near unity CO on silver nanocubes[J].ACS Catalysis,2020,10(5):3158⁃3163. |
22 | Dong H,Zhang L,Yang P,et al.Facet design promotes electroreduction of carbon dioxide to carbon monoxide on palladium nanocrystals[J].Chemical Engineering Science,2019,194:29⁃35. |
23 | Liu S,Wang X, Tao H,et al.Thin 5⁃fold twinned sub⁃25 nm silver nanowires enable highly selective electroreduction of CO2 to CO[J].Nano Energy,2018,45:456⁃462. |
24 | Fan T,Wu Q,Yang Z,et al.Electrochemically driven formation of sponge⁃like porous silver nanocubes toward efficient CO2 electroreduction to CO[J].ChemSusChem,2020,13(10):2677⁃2683. |
25 | Lu Y,Han B,Tian C,et al.Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network[J].Electrochemistry Communications,2018,97:87⁃90. |
26 | Li Y H,Liu P F,Li C Z,et al.Sharp⁃tipped zinc nanowires as an efficient electrocatalyst for carbon dioxide reduction[J].Chemistry,2018,24(58):15486⁃15490. |
27 | Torelli D A,Francis S A,Crompton J C,et al.Nickel⁃gallium⁃catalyzed electrochemical eduction of CO2 to highly reduced products at low overpotentials[J].ACS Catalysis,2016,6(3):2100⁃2104. |
28 | Han N,Sun M,Zhou Y,et al.Alloyed palladium⁃silver nanowires enabling stable carbon dioxide reduction to formate[J].Advanced Materials,2021,33(4):2005821. |
29 | Gilroy K D,Ruditskiy A,Peng H C,et al.Bimetallic nanocrystals:Syntheses,properties,and applications[J].Chemical Reviews,2016,116(18):10414⁃10472. |
30 | Wang C,Cao M,Jiang X,et al.A catalyst based on copper⁃cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency[J].Electrochimica Acta,2018,271:544⁃550. |
31 | Luo W,Xie W,Mutschler R,et al.Selective and stable electroreduction of CO2 to CO at the copper/indium interface[J].ACS Catalysis,2018,8(7):6571⁃6581. |
32 | Zhu S,Wang Q,Qin X,et al.Tuning structural and compositional effects in Pd⁃Au nanowires for highly selective and active CO2 electrochemical reduction reaction[J].Advanced Energy Materials,2018,8(32):1802238. |
33 | Sun K,Cheng T,Wu L,et al.Ultrahigh mass activity for carbon dioxide reduction enabled by gold⁃iron core⁃shell nanoparticles[J].Journal of the American Chemical Society,2017,139(44):15608⁃15611. |
34 | Yoo C J,Dong W J,Park J Y,et al.Compositional and geometrical effects of bimetallic Cu⁃Sn catalysts on selective electrochemical CO2 Reduction to CO[J].ACS Applied Energy Materials,2020,3(5):4466⁃4473. |
35 | Wang M,Ren X,Yuan G,et al.Selective electroreduction of CO2 to CO over co⁃electrodeposited dendritic core⁃shell indium ⁃doped Cu@Cu2O catalyst[J].Journal of CO2 Utilization,2020,37:204⁃212. |
36 | Wang L,Peng H,Lamaison S,et al.Bimetallic effects on Zn⁃Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO[J].Chem Catalysis,2021,1(3):663⁃680. |
37 | Han J,Li S,Chen J,et al.Dendritic Ag/Pd alloy nanostructure arrays for electrochemical CO2 reduction[J].ChemElectroChem,2020,7(12):2608⁃2613. |
38 | 苏文礼,范煜.金属基材料电催化CO2还原的研究进展[J].化工进展,2021,40(3):1384⁃1394. |
Su W L,Fan Y.Progress of electrocatalytic reduction of CO2 on metal⁃based materials[J].Chemical Industry and Engineering Progress,2021,40(3):1384⁃1394. | |
39 | Kornienko N,Zhao Y,Kley C S,et al.Metal⁃organic frameworks for electrocatalytic reduction of carbon dioxide[J].Journal of the American Chemical Society,2015,137(44):14129⁃14135. |
40 | Kumar B,Asadi M,Pisasale D,et al.Renewable and metal⁃free carbon nanofibre catalysts for carbon dioxide reduction[J].Nature Communications,2013,4(1):2819. |
41 | Jiang Z,Wang Y,Zhang X,et al.Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes[J].Nano Research,2019,12(9):2330⁃2334. |
42 | Zhu M,Chen J,Guo R,et al.Cobalt phthalocyanine coordinated to pyridine⁃functionalized carbon nanotubes with enhanced CO2 electroreduction[J].Applied Catalysis B:Environmental,2019,251:112⁃118. |
43 | Choi J,Wagner P,Jalili R,et al.A porphyrin/graphene framework:A highly efficient and robust electrocatalyst for carbon dioxide reduction[J].Advanced Energy Materials,2018,8(26):1801280. |
44 | Zhang X,Wang Y,Gu M,et al.Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J].Nature Energy,2020,5(9):1⁃9. |
45 | Wang M,Torbensen K,Salvatore D,et al.Electrochemical catalytic reduction with a highly active cobalt phthalocyanine[J].Nature Communications,2019,10(1):3602⁃3609. |
46 | Zhang X,Wu Z,Zhang X,et al.Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J].Nature Communications,2017,8:14675. |
47 | Lan Y Q,Lu M,Zhang M,et al.Stable dioxin⁃linked metallophthalocyanine covalent organic frameworks as photo⁃coupled electrocatalysts for CO2 reduction[J].Angewandte Chemie International Edition,2020,60(9):4864⁃4871. |
48 | Liu J.Catalysis by supported single metal atoms[J].ACS Catalysis,2016,7(1):34⁃59. |
49 | Yuan C Z,Li H B,Jiang Y F,et al.Tuning the activity of N⁃doped carbon for CO2 reduction via in situ encapsulation of nickel nanoparticles into nano⁃hybrid carbon substrates[J].Journal of Materials Chemistry A,2019,7(12):6894⁃6900. |
50 | Li Z,He D,Yan X,et al.Size⁃dependent nickel⁃based electrocatalysts for selective CO2 reduction[J].Angewandte Chemie,2020,59(42):18572⁃18577. |
51 | Gu J,Hsu C S,Bai L,et al.Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J].Science,2019,364(6445):1091⁃1094. |
52 | Tran N H,Nastaran R,Gwenaëlle R,et al.Electrochemical reduction of CO2 catalyzed by Fe-N-C materials:A structure ⁃selectivity study[J].ACS Catalysis,2017,7(3):1520⁃1525. |
53 | Yan C C,Li H,Ye Y F,et al.Coordinatively unsaturated nickel⁃nitrogen sites towards selective and high⁃rate CO2 electroreduction[J].Energy & Environmental Science:EES,2018,11(5):1204⁃1210. |
54 | Wu Q,Liang J,Xie Z L,et al.Spatial sites separation strategy to fabricate atomically isolated nickel catalysts for efficient CO2 electroreduction[J].ACS Materials Letters,2021,3(5):454⁃461. |
55 | Zhang C,Yang S,Wu J,et al.Electrochemical CO2 reduction with atomic iron⁃dispersed on nitrogen⁃doped graphene[J].Advanced Energy Materials,2018,8(19):1703487. |
56 | Wang X,Chen Z,Zhao X,et al.Regulation of coordination number over single Co sites:Triggering the efficient electroreduction of CO2[J].Angewandte Chemie,2018,130(7):1962⁃1966. |
57 | Gong Y N,Jiao L,Qian Y,et al.Regulating the coordination environment of MOF⁃templated single⁃atom nickel electrocatalysts for boosting CO2 reduction[J].Angewandte Chemie International Edition,2020,59(7):2705⁃2709. |
58 | Wang A,Li J,Zhang T.Heterogeneous single⁃atom catalysis[J].Nature Reviews Chemistry,2018,2:65⁃81. |
59 | Ju W,Bagger A,Hao G P,et al.Understanding activity and selectivity of metal⁃nitrogen⁃doped carbon catalysts for electrochemical reduction of CO2[J].Nature Communications,2017,8(1):944. |
60 | Zhao C,Dai X,Yao T,et al.Ionic exchange of metal⁃organic frameworks to access single nickel sites for efficient electroreduction of CO2[J].Journal of the American Chemical Society,2017,139(24):8078⁃8081. |
61 | Li X,Wang S,Li L,et al.Progress and perspective for In situ studies of CO2 reduction[J].Journal of the American Chemical Society,2020,142(21):9567⁃9581. |
[1] | Jiaman WANG, Jing XIONG, Jinge SHI, Yuechang WEI, Kailing HUO. An Overview of Carbon Dioxide Catalyzed by Titanium Dioxide Catalyst [J]. Journal of Petrochemical Universities, 2024, 37(4): 1-11. |
[2] | Xiaoyu CHEN, Chunrong WANG, Jing SUN, Jingyun WANG, Yang CHEN, Mingdong ZHOU. Synthesis of Cyclic Carbonate from Carbon Dioxide Catalyzed by Different Morphologies CeO2 [J]. Journal of Petrochemical Universities, 2023, 36(5): 38-44. |
[3] | Yujing Zhang, Baoshan Zhang, Jie Sun. Progress in Hydrogen Production by Water Electrolysis and Its Electrocatalysts [J]. Journal of Petrochemical Universities, 2022, 35(6): 19-27. |
[4] | Xingsi Kang, Qiongyao Chen, Lin He. Recent Advances on MeOH Production via Homogeneous Catalytic CO2 Hydrogenation [J]. Journal of Petrochemical Universities, 2022, 35(5): 25-35. |
[5] | Lü Manli, Gong Xun, Qin Yucai, Zhang Xiaotong, Song Lijuan. In⁃Situ Infrared Diffuse Reflectance Spectrum of CO Adsorbed on Pd⁃Ag/Al2O3 Catalysts [J]. Journal of Petrochemical Universities, 2020, 33(6): 8-12. |
[6] | Wang Pingping,Liu Dan,Yang Lixia,Zhang Peng,Liu Chengwei. Synthesis, Characterization and CO2 Adsorption Properties of Nano⁃Lithium Silicate [J]. Journal of Petrochemical Universities, 2018, 31(5): 11-16. |
[7] | Li Chuanxian, Wei Guoqing1, Ma Xiaobin, Sun Guangyu,Yang Fei. Effect of CO2 Dissolution on the Viscosity of Heavy Crude Oil by Stirring Viscometric Method [J]. Journal of Petrochemical Universities, 2017, 30(6): 66-71. |
[8] | Li Chuanxian,Yan Kongyao,Yang Shuang,et al. CO2 Swelling and Synergistic Effect of CH4 on Rheological Improvement of Changqing Crude Oil [J]. Journal of Petrochemical Universities, 2017, 30(5): 86-92. |
[9] | Wang Fang, Luo Hui,Ren Yufei,et al. Progress of Miscibility Pressure Reduction of Carbon Dioxide Flooding [J]. Journal of Petrochemical Universities, 2015, 28(6): 93-97. |
[10] | Sun ChengzhiYang Lixia Zuo Chensheng,e tal. Preparation and Performance Investigation of LithiumBased Silicate Materials [J]. Journal of Petrochemical Universities, 2015, 28(3): 12-16. |
[11] | Li Xin, Li Jin. Influence of Long Transmission Natural Gas Properties on Internal Corrosion of Pipeline [J]. Journal of Petrochemical Universities, 2015, 28(2): 69-72. |
[12] | Cheng Yiru,Zhang Lei,Pu Renjuan,et al. Research Progress of Low Temperature Carbon Dioxide Solid Adsorbent [J]. Journal of Petrochemical Universities, 2015, 28(2): 91-96. |
[13] | LIU Ai-xian, LIU Peng, SUN Qiang,et al. The Experimental and Modeling Studies on the Diffusion Coefficient of CO2 in Pure Water [J]. Journal of Petrochemical Universities, 2012, 25(6): 5-9. |
[14] | GUAN Yue, SUN Wan-fu, ZHANG Zhi-zhi,et al. Thermodynamic Analysis on the Formation of Acrylic Acid from CO2 and C2H4 [J]. Journal of Petrochemical Universities, 2012, 25(3): 6-12. |
[15] | ZHU Ling,YU Jun-jie,LIU Shi-peng. The Effect of Reaction Condition on the CO2 Absorption With DEA Solution [J]. Journal of Petrochemical Universities, 2012, 25(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Petrochemical Universities
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56860967 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.