1 |
Wang Q H, Xu J T, Zhang W C, et al. Research progress on vanadium⁃based cathode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(19): 8815⁃8838.
|
2 |
Liu Z, Yu Q, Zhao Y L, et al. Silicon oxides:A promising family of anode materials for lithium⁃ion batteries[J]. Chemical Society Review, 2019, 48(1): 285⁃309.
|
3 |
Yan B, Zhong S K, Liu X J, et al. Growth of large⁃area petal⁃like V2O5 thin nanosheets for superior lithium storage[J]. Journal of Alloys and Compounds, 2021, 875: 159899.
|
4 |
Goikolea E, Palomares V, Wang S J, et al. Na⁃ion batteries⁃approaching old and new challenges[J]. Advanced Energy Materials, 2020, 10(44): 2002055.
|
5 |
Ghimbeu C M,Gorka J,Simone V,et al.Insights on the Na+ ion storage mechanism in hard carbon:Discrimination between the porosity,surface functional groups and defects[J].Nano Energy,2018,44:327⁃35.
|
6 |
Chen M Z, Liu Q N, Hu Z, et al. Designing advanced vanadium⁃based materials to achieve electrochemically active Multielectron reactions in sodium/potassium⁃ion batteries[J]. Advanced Energy Materials, 2020, 10(42): 2002244.
|
7 |
Wang X H, Li Q, Wang H Y. Anatase TiO2 as a Na+⁃storage anode active material for dual⁃ion batteries[J]. ACS Applied Materials Interfaces, 2019, 11(33): 30453⁃30459.
|
8 |
Zhang W Y, Jin H X, Chen G W, et al. Sandwich⁃like N⁃doped carbon nanotube@Nb2C MXene composite for high performance alkali ion batteries[J]. Ceramics International, 2021, 47(14):20610⁃20616.
|
9 |
Tomboc G M, Wang Y T, Wang H, et al. Sn⁃based metal oxides and sulfides anode materials for Na ion battery[J]. Energy Storage Materials, 2021, 39: 21⁃44.
|
10 |
Qin M S, Ren W H, Jiang R X, et al. Highly crystallized prussian blue with enhanced kinetics for highly efficient sodium storage[J]. ACS Applied Materials Interfaces, 2021, 13: 3999⁃4007.
|
11 |
Guo W B, She Z Y, Xue H T, et al. Density functional theory study on the Ti3CN and Ti3CNT2 (T = O, S and F) as high capacity anode material for Na ion batteries[J]. Applied Surface Science, 2020, 529: 147180.
|
12 |
卢虹宇,赵景新,彭琪贺,等.正极材料五氧化二钒常规改性的研究进展[J].化学世界, 2020, 61(3):153⁃164.
|
|
Lu H Y,Zhao J X,Peng Q H,et al.Progress in conventional modification of vanadium pentoxideas cathode material[J]. Chemical World,2020,61(3):153⁃164.
|
13 |
West K, Christiansen Z B, Jacobsen T, et al. Sodium insertion in vanadium oxides[J]. Solid State Ionics, 1988, 28⁃30: 1128⁃1131.
|
14 |
Lu J S, Nguyen M N, Liu W R, et al. Electrochemical properties of novel FeV2O4 as an anode for Na⁃ion batteries[J]. Scientific Reports, 2018, 8: 8839.
|
15 |
Tan H, Yu X Z, Huang K, et al. Large⁃scale carambola⁃like V2O5 nanoflowers arrays on microporous reed carbon as improved electrochemical performances lithium⁃ion batteries cathode[J]. Journal of Energy Chemistry, 2020, 51: 388⁃395.
|
16 |
Geng H B, Cheng M, Wang B, et al. Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high⁃rate and low⁃temperature zinc⁃ion batteries[J].Advanced Function Materials,2019,30(6):1907684.
|
17 |
Chernova N A, Roppolo M, Dillon A C, et al. Layered vanadium and molybdenum oxides: Batteries and electrochromics[J]. Journal of Materials Chemistry, 2009, 19(17): 2526⁃2552.
|
18 |
Ghulam A, Lee J H, Si H O, et al. Investigation of the Na intercalation mechanism into nano⁃sized V2O5/C composite cathode material for Na⁃ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6032⁃6039.
|
19 |
Li W Y, Ji J C, Yao J H, et al. Sodium ion storage performance and mechanism in orthorhombic V2O5 single⁃crystalline nanowires[J]. Science China Materials, 2021, 64: 557⁃570.
|
20 |
Rui X H, Tang Y, Malyi O I, et al. Ambient dissolution⁃recrystallization towards large⁃scale preparation of V2O5 nanobelts for high⁃energy battery applications[J]. Nano Energy, 2016, 22: 583⁃593.
|
21 |
Su D W, Dou X, Wang G X.Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium⁃ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(29): 11185⁃11194.
|
22 |
Zhao Z J, Li D L, Wang C Z, et al. Hierarchical V2O5 microspheres: A pseudocapacitive cathode material for enhanced sodium ion storage[J]. Journal of Alloys and Compounds, 2022, 895: 162617.
|
23 |
Wang L, Wang Y C, Cao A M, et al. Electrochemically anodized V2O5 as an efficient sodium cathode[J]. Energy Fuels, 2021, 35(9): 8358⁃8364.
|
24 |
Kulish V V, Manzhos S. Comparison of Li, Na, Mg and Al⁃ion insertion in vanadium pentoxides and vanadium dioxides[J]. RSC Advances, 2017, 7(30): 18643⁃18649.
|
25 |
Córdobaa R, Kuhna A, Pérez J C F, et al. Sodium insertion in high pressure β⁃V2O5: A new high capacity cathode material for sodium ion batteries[J]. Journal of Power Sources, 2019, 422: 42⁃48.
|
26 |
Baddour H R, Renard M S, Emery N, et al. The richness of V2O5 polymorphs as superior cathode materials for sodium insertion[J]. Electrochimica Acta, 2018, 270: 129⁃137.
|
27 |
Renard M S, Baddour H R, Ramos J P. Kinetic insight into the electrochemical sodium insertion⁃extraction mechanism of the puckered γ′⁃V2O5 polymorph[J]. Electrochimica Acta, 2019, 322: 134670.
|
28 |
Baddour H R, Renard M S, Ramos J P. Enhanced electrochemical properties of ball⁃milled γ′⁃V2O5 as cathode material for Na⁃ion batteries: A structural and kinetic investigation[J]. Journal of Power Sources, 2021, 482: 229017.
|
29 |
Moretti A, Passerini S. Bilayered nanostructured V2O5·nH2O for metal batteries[J]. Advanced Energy Materials, 2016, 6(23): 1600868.
|
30 |
Tepavcevic S, Xiong H, Stamenkovic V R, et al. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium⁃ion batteries[J]. ACS Nano, 2012, 6(1): 530⁃538.
|
31 |
Su D W, Wang G X. Single⁃crystalline bilayered V2O5 nanobelts for high⁃capacity sodium⁃ion batteries[J]. ACS Nano, 2013, 7(12): 11218⁃11226.
|
32 |
Wei Q L, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity[J]. Journal of Materials Chemistry A, 2015, 3(15): 8070⁃8075.
|
33 |
Wang H, Bi X X, Bai Y, et al. Open⁃structured V2O5·nH2O nanoflakes as highly reversible cathode material for monovalent and multivalent intercalation batteries[J]. Advanced Energy Materials, 2017, 7(14): 1602720.
|
34 |
Moretti A, Secchiaroli M, Buchholz D, et al. Exploring the low voltage behavior of V2O5 aerogel as intercalation host for sodium ion battery[J]. Journal of the Electrochemical Society, 2015, 162(14): 2723⁃2728.
|
35 |
Moretti A, Maroni F, Osada I, et al. V2O5 aerogel as a versatile cathode material for lithium and sodium batteries[J]. ChemElectroChem, 2015, 2(4):529⁃537.
|
36 |
Li Y W, Liu C Z, Xie Z P, et al. Superior sodium storage performance of additive⁃free V2O5 thin film electrode[J]. Journal of Materials Chemistry A, 2017, 5(32): 16590⁃16594.
|
37 |
Li S Y, Li X F, Li Y W, et al. Superior sodium storage of vanadium pentoxide cathode with controllable interlamellar spacing[J]. Electrochimica Acta, 2017, 244: 77⁃85.
|
38 |
Tolhurst T M, Leedahl B, Andrews J L, et al. Electronic structure of ε′⁃V2O5: An expanded band gap in a double⁃layered polymorph with increased interlayer separation[J]. Journal of Materials Chemistry A, 2017, 5(45): 23694⁃23703.
|
39 |
Hadjean R B, Renard M S, Emery N, et al. The richness of V2O5 polymorphs as superior cathode materials for sodium insertion[J]. Electrochimica Acta, 2018, 270: 129⁃137.
|
40 |
Ji J C, Li Y W, Zhang Z L, et al. PEG intercalated vanadium pentoxide xerogel for enhanced sodium storage[J]. Materials Letters, 2020, 270: 127752.
|
41 |
Clites M, Pomerantseva E. Bilayered vanadium oxides by chemical pre⁃intercalation of alkali and alkali⁃earth ions as battery electrodes[J]. Energy Storage Materials, 2018, 11: 30⁃37.
|
42 |
Cai Y S, Zhou J, Fang G Z, et al. Na0.282V2O5: A high⁃performance cathode material for rechargeable lithium batteries and sodium batteries[J]. Journal of Power Sources, 2016, 328: 241⁃249.
|
43 |
Pan H, Zhang G B, Liao X B, et al. Sodium ion stabilized vanadium oxide nanowire cathode for high⁃performance zinc⁃ion batteries[J]. Advanced Energy Materials, 2018, 8(10): 1702463.
|
44 |
Parmar R, Matsubara E Y, Gunnella R, et al. Electro⁃insertion of Mn2+ ions into V2O5·nH2O on MWCNTs coated carbon felt for binder⁃free Na+ ion battery electrodes[J]. Sustainable Energy & Fuels, 2020, 4(8): 3951⁃3962.
|
45 |
Liu C Z, Yao J H, Zou Z G, et al. Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium⁃ion batteries[J]. Materials Today Energy, 2019, 11: 218⁃227.
|
46 |
Dong J, Jiang Y L, Wei Q L, et al. Strongly coupled pyridine⁃V2O5·nH2O nanowires with intercalation pseudocapacitance and stabilized layer for high energy sodium ion capacitors[J]. Small, 2019, 15(22): 1900379.
|
47 |
Wang Z Q, Tang X Y, Yuan S, et al. Engineering vanadium pentoxide cathode for the zero⁃strain cation storage via a scalable intercalation⁃polymerization approach[J]. Advanced Energy Materials, 2021, 31(22): 2100164.
|
48 |
Zhao M S, Wang J, He X H, et al. Graphene modified vanadium oxide composite materials used in aqueous Na⁃ion batteries[J]. Energy & Fuels, 2021, 35(24): 20394⁃20399.
|
49 |
Tian S, Cai T H, Wang D D, et al. A superior cathode of sodium⁃ion battery: A V2O5 nanosheets anchored on carbon nanofibers[J]. IOP Conference Series: Earth and Environmental Science, 2021, 692: 022042.
|
50 |
Etman A S, Sun J L, Younesi R. V2O5·nH2O nanosheets and multi⁃walled carbon nanotube composite as a negative electrode for sodium⁃ion batteries[J]. Journal of Energy Chemistry, 2019, 30: 145⁃151.
|
51 |
Shang C Q, Hua L, Lin Q, et al. Integration of NaV6O15·nH2O nanowires and rGO as cathode materials for efficient sodium storages[J]. Applied Surface Science, 2019, 494: 458⁃464.
|
52 |
Feng J J, Xiong Z M, Zhao L, et al. One⁃pot hydrothermal synthesis of NaxV2O5·nH2O/KB nanocomposite as a sodium⁃ion battery cathode for improved reversible capacity and rate performance[J]. Journal of Power Sources, 2018, 396: 230⁃237.
|
53 |
Liu F S, Sun X X, Liu Y T, et al. TiO2 nanorods confined in porous V2O5 nanobelts and interconnected carbon channels for sodium ion batteries[J]. Applied Surface Science, 2019, 473: 873⁃884.
|