Journal of Petrochemical Universities ›› 2022, Vol. 35 ›› Issue (6): 28-37.DOI: 10.3969/j.issn.1006-396X.2022.06.004
Previous Articles Next Articles
Yunjie Gou(), Guangdong Li, Zhenhua Wang(), Kening Sun
Received:
2022-08-01
Revised:
2022-08-20
Published:
2022-12-25
Online:
2023-01-07
Contact:
Zhenhua Wang
通讯作者:
王振华
作者简介:
勾匀婕(1996⁃),女,博士研究生,从事固体氧化物燃料电池方面的研究;E⁃mail:3120195686@bit.edu.cn。
基金资助:
CLC Number:
Yunjie Gou, Guangdong Li, Zhenhua Wang, Kening Sun. Application Prospects and Challenges of Solid Oxide Electrolysis Cell Technology[J]. Journal of Petrochemical Universities, 2022, 35(6): 28-37.
勾匀婕, 李广东, 王振华, 孙克宁. 固体氧化物电解池技术的应用前景与挑战[J]. 石油化工高等学校学报, 2022, 35(6): 28-37.
1 | Luo Y,Shi Y X,Li W Y,et al.Synchronous enhancement of H2O/CO2 co⁃electrolysis and methanation for efficient one⁃step power⁃to⁃methane[J].Energy Convers Manage,2018,165(1):127⁃136. |
2 | Ye L T,Xie K.High⁃temperature electrocatalysis and key materials in solid oxide electrolysis cells[J].Journal of Energy Chemistry,2021,54:736⁃745. |
3 | Rabuni M F,VatcharasuwanA N,Li T,et al.High performance micro⁃monolithic reversible solid oxide electrochemical reactor[J].Journal of Power Sources,2020,458:228026. |
4 | Yang X X,Sun K N,Ma M J,et al.Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis[J].Applied Catalysis B:Environmental,2020,272:118968. |
5 | Li Y,Zhang Q,Mei Z W,et al.Recent advances and perspective on electrochemical ammonia synthesis under ambient conditions[J].Small Methods,2021,5(11):e2100460. |
6 | Zhang Y,Wang J C,Yu B,et al.A review of high temperature co⁃electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells(SOECs):Advanced materials and technology[J].Chemical Society Reviews,2017,46(5):1427⁃1463. |
7 | Wang T P,Wang J J,Yu L B,et al.Effect of NiO/YSZ cathode support pore structure on CO2 electrolysis via solid oxide electrolysis cells[J].Journal of the European Ceramic Society,2018,38(15):5051⁃5057. |
8 | Song Y F,Zhou Z W,Zhang X M,et al.Pure CO2 electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell[J].Journal of Materials Chemistry A,2018,6(28):13661⁃13667. |
9 | 胡兴国,刘立敏,钱欣源,等.过渡金属Fe、Mn掺杂CeO2浸渍改性高温固体氧化物电池Ni⁃YSZ电极的电化学性能研究[J].陶瓷学报,2022,43(3):401⁃411. |
Hu X G,Liu L M,Qian X Y,et al.Electrochemical properties of Fe/Mn doped CeO2 impregnation modified Ni⁃YSZ electrode for high temperature solid oxide cells[J].Journal of Ceramics,2022,43(3):401⁃411. | |
10 | Wang W,Qu J F,Julião P S B,et al.Recent advances in the development of anode materials for solid oxide fuel cells utilizing liquid oxygenated hydrocarbon fuels:A mini review[J].Energy Technology,2019,7(1):33⁃44. |
11 | Zhao K,Chen J,Li H B,et al.Effects of Co⁃substitution on the reactivity of double perovskite oxides LaSrFe2- xCoxO6 for the chemical⁃looping steam methane reforming[J].Journal of the Energy Institute,2019,92(3):594⁃603. |
12 | 杨权森,王芳芳.A位缺陷对铁酸盐基阴极材料硫中毒特性影响[J].石油化工高等学校学报,2021,34(6):1⁃6. |
Yang Q S,Wang F F.Effect of A⁃site defect on sulfur poisoning behaivor of ferrite⁃based cathode materials[J].Journal of Petrochemical Universities,2021,34(6):1⁃6. | |
13 | Wang S,Jiang H G,Gu Y H,et al.Mo⁃doped La0.6Sr0.4FeO3-δ as an efficient fuel electrode for direct electrolysis of CO2 in solid oxide electrolysis cells[J].Electrochimica Acta,2020,337:135794. |
14 | Cao Z Q,Wang Z H,Li F J,et al.Insight into high electrochemical activity of reduced La0.3Sr0.7Fe0.7Ti0.3O3 electrode for high temperature CO2 electrolysis[J].Electrochimica Acta,2020,332:135464. |
15 | Zhou Y J,Zhou Z W,Song Y F,et al.Enhancing CO2 electrolysis performance with vanadium⁃doped perovskite cathode in solid oxide electrolysis cell[J].Nano Energy,2018,50:43⁃51. |
16 | Zhu J X,Zhang W Q,Li Y F,et al.Enhancing CO2 catalytic activation and direct electroreduction on in⁃situ exsolved Fe/MnOx nanoparticles from (Pr,Ba)2Mn2- yFeyO5+δ layered perovskites for SOEC cathodes[J].Applied Catalysis B:Environmental,2020,268:118389. |
17 | Chen L H,Xu J,Wang X,et al.Sr2Fe1.5+ xMo0.5O6-δ cathode with exsolved Fe nanoparticles for enhanced CO2 electrolysis[J].International Journal of Hydrogen Energy,2020,45(21):11901⁃11907. |
18 | Lee S,Woo S H,Shin T H,et al.Pd and GDC Co⁃infiltrated LSCM cathode for high⁃temperature CO2 electrolysis using solid oxide electrolysis cells[J].Chemical Engineering Journal,2021,420:127706. |
19 | Wu P P,Tian Y T,Lü Z,et al.Electrochemical performance of La0.65Sr0.35MnO3 oxygen electrode with alternately infiltrated Sm0.5Sr0.5CoO3-δ and Sm0.2Ce0.8O1.9 nanoparticles for reversible solid oxide cells[J].International Journal of Hydrogen Energy,2022,47(2):747⁃760. |
20 | Chen G,Zhou W,Guan D Q,et al.Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofilms with tunable oxidation state[J].Science Advances,2017,3:1603206. |
21 | Choi S,Davenport T C,Haile S M.Protonic ceramic electrochemical cells for hydrogen production and electricity generation:Exceptional reversibility,stability,and demonstrated faradaic efficiency[J].Energy & Environmental Science,2019,12(1):206⁃215. |
22 | Lei L B,Zhang J H,Yuan Z H,et al.Progress report on proton conducting solid oxide electrolysis cells[J].Advanced Functional Materials,2019,29(37):1903805. |
23 | Li G D,Gou Y J,Ren R Z,et al.Fluorinated Pr2NiO4+δ as high⁃performance air electrode for tubular reversible protonic ceramic cells[J].Journal of Power Sources,2021,508:230343. |
24 | Xu K,Zhang H,Xu Y S,et al.An efficient steam‐induced heterostructured air electrode for protonic ceramic electrochemical cells[J].Advanced Functional Materials,2022,32(23):2110998. |
25 | Li G D,Gou Y J,Cheng X J,et al.Enhanced electrochemical performance of the Fe⁃based layered perovskite oxygen electrode for reversible solid oxide cells[J].ACS Applied Materials & Interfaces,2021,13(29):34282⁃34291. |
26 | Ebbesen S D,Jensen S H,Hauch A,et al.High temperature electrolysis in alkaline cells,solid proton conducting cells,and solid oxide cells[J].Chemical Reviews,2014,114(21):10697⁃10734. |
27 | Zhang L H,Xu C M,Sun W,et al.Constructing perovskite/alkaline⁃earth metal composite heterostructure by infiltration to revitalize CO2 electrolysis[J].Separation and Purification Technology,2022,298:121475. |
28 | Xu S S,Li S S,Yao W T,et al.Direct electrolysis of CO2 using an oxygen⁃ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode[J].Journal of Power Sources,2013,230:115⁃121. |
29 | Song Y F,Zhang X M,Xie K,et al.High⁃temperature CO2 electrolysis in solid oxide electrolysis cells:Developments,challenges,and prospects[J].Advanced Materials,2019,31(50):1902033. |
30 | Ma M J,Yang X X,Xu C M,et al.Constructing highly active alloy⁃perovskite interfaces for efficient electrochemical CO2 reduction reaction[J].Separation and Purification Technology,2022,296:121411. |
31 | Ye L T,Zhang M Y,Huang P,et al.Enhancing CO2 electrolysis through synergistic control of non⁃stoichiometry and doping to tune cathode surface structures[J].Nature Communications,2017,8:14785. |
32 | Chen D,Niakolas D K,Papaefthimoou V,et al.How the surface state of nickel/gadolinium⁃doped ceria cathodes influences the electrochemical performance in direct CO2 electrolysis[J].Journal of Catalysis,2021,404:518⁃528. |
33 | Lo Faro M,Trocino S,Zignani S C,et al.Production of syngas by solid oxide electrolysis:A case study[J].International Journal of Hydrogen Energy,2017,42(46):27859⁃27865. |
34 | Zheng M H,Wang S,Yang Y,et al.Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni–yttria stabilized zirconia cathodes for solid oxide electrolysis cells[J].Journal of Materials Chemistry A,2018,6(6):2721⁃2829. |
35 | Yu S B,Lee S H,Mehran M T,et al.Syngas production in high performing tubular solid oxide cells by using high⁃temperature H2O/CO2 co⁃electrolysis[J].Chemical Engineering Journal,2018,335:41⁃51. |
36 | Irvinbe J T S,Neagu D,Vervraeken M C,et al.Evolution of the electrochemical interface in high⁃temperature fuel cells and electrolysers[J].Nature Energy,2016,1:15014. |
37 | Wang Y,Liu T,Fang S M,et al.Syngas production on a symmetrical solid oxide H2O/CO2 co⁃electrolysis cell with Sr2Fe1.5Mo0.5O6–δ⁃Sm0.2Ce0.8O1.9 electrodes[J].Journal of Power Sources,2016,305:240⁃248. |
38 | Gan J J,Hou N J,Yao T T,et al.A high performing perovskite cathode with in situ exsolved Co nanoparticles for H2O and CO2 solid oxide electrolysis cell[J].Catalysis Today,2021,364:89⁃96. |
39 | Wang Y,Liu T,Lei L B,et al.Methane assisted solid oxide co⁃electrolysis process for syngas production[J].Journal of Power Sources,2017,344:119⁃127. |
40 | Kyriakou V,Neagu D,Zafeiropoulos G,et al.Symmetrical exsolution of Rh nanoparticles in solid oxide cells for efficient syngas production from greenhouse gases[J].ACS Catalysis,2019,10(2):1278⁃1288. |
41 | 耿志强,毕帅,王尊,等.基于改进NSGA⁃Ⅱ算法的乙烯裂解炉操作优化[J].化工学报,2020,71(3):1088⁃1094. |
Geng Z Q,Bi S,Wang Z,et al.Operation optimization of ethylene cracking furnace based on improved NSGA⁃Ⅱ algorithm[J].CIESC Journal,2020,71(3):1088⁃1094. | |
42 | Song Y F,Lin L,Feng W C,et al.Interfacial enhancement by gamma⁃Al2O3 of electrochemical oxidative dehydrogenation of ethane to ethylene in solid oxide electrolysis cells[J].Angewandte Chemie International Edition,2019,58(45):16043⁃16046. |
43 | Schwach P,Pan X L,Bao X H.Direct conversion of methane to value⁃added chemicals over heterogeneous catalysts: challenges and prospects[J].Chemical Reviews,2017,117(13):8497⁃8520. |
44 | Zhu C L,Hou S S,Hu X L,et al.Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer[J].Nature Communications,2019,10(1):1173. |
45 | Ye L T,Shang Z B,Xie K.Selective oxidative coupling of methane to ethylene in a solid oxide electrolyser based on porous single⁃crystalline CeO2 monoliths[J].Angewandte Chemie International Edition,2022,61(32):e202207211. |
46 | Zhang X R,Ye L T,Li H,et al.Electrochemical dehydrogenation of ethane to ethylene in a solid oxide electrolyzer[J].ACS Catalysis,2020,10(5):3505⁃3513. |
47 | 刘恒源,王海辉,徐建鸿.电催化氮还原合成氨电化学系统研究进展[J].化工学报,2022,73(1):32⁃45. |
Liu H Y,Wang H H,Xu J H.dvances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen[J].CIESC Journal,2022,73(1):32⁃45. | |
48 | Lan R,Alkhazmi K A,Amar I A,et al.Synthesis of ammonia directly from wet air using Sm0.6Ba0.4Fe0.8Cu0.2O3-δ as the catalyst[J].Faraday Discuss,2015,182:353⁃363. |
49 | Marnellos G,Stoukides M.Ammonia synthesis at atmospheric pressure[J].Science,1998,282(5386):98⁃100. |
50 | Yun D S,Joo J H,Yu J H,et al.Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver,platinum, and lanthanum strontium cobalt ferrite electrocatalyst[J].Journal of Power Sources,2015,284:245⁃251. |
51 | Yoo C Y,Park J H,Kim K,et al.Role of protons in electrochemical ammonia synthesis using solid⁃state electrolytes[J].ACS Sustainable Chemistry & Engineering,2017,5(9):7972⁃7978. |
52 | Amar I A,Lan R,Hmphreys J,et al.Electrochemical synthesis of ammonia from wet nitrogen via a dual⁃chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3-δ⁃Ce0.8Gd0.18Ca0.02O2-δ composite cathode[J].Catalysis Today,2017,286:51⁃56. |
53 | 练文超,雷励斌,梁波,等.质子导体固体氧化物电化学装置中氨的利用与合成[J].储能科学与技术,2021,10(6):1998⁃2007. |
Lian W C,Lei L B,Liang B,et al.Utilization and synthesis of ammonia in proton⁃conducting solid oxide electrochemical devices[J].Energy Storage Science and Technology,2021,10(6):1998⁃2007. | |
54 | Zhang H F,Wang L G,Van Herle J,et al.Techno⁃economic optimization of CO2⁃to⁃methanol with solid⁃oxide electrolyzer[J].Energies,2019,12(19):3742. |
55 | Schemme S,Breuer J L,Köller M,et al.H2⁃based synthetic fuels:A techno⁃economic comparison of alcohol,ether and hydrocarbon production[J].International Journal of Hydrogen Energy,2020,45(8):5395⁃5414. |
56 | Morejudo S H,Zanón R,Escolástico S,et al. Direct conversion ofmethane to aromatics in a catalytic co⁃ionic membrane reactor[J].Science,2016,353(6299):563⁃565. |
57 | Hjalmarsson P,Sun X F,Liu Y L, et al.Durability of high performance Ni⁃yttria stabilized zirconia supported solid oxide electrolysis cells at high current density[J].Journal of Power Sources,2014,262:316⁃322. |
58 | Alenazey F,Alyousef Y,Almisned O,et al.Production of synthesis gas (H2 and CO) by high⁃temperature Co⁃electrolysis of H2O and CO2[J].International Journal of Hydrogen Energy,2015,40(32):10274⁃10280. |
59 | Chen M,Hogh J V T,Nielsen J U,et al.High temperature Co⁃electrolysis of steam and CO2 in an SOC stack:Performance and durability[J].Fuel Cells,2013,13(4):638⁃645. |
60 | Rao M,Sun X F,Hagen A.Durability of solid oxide electrolysis stack under dynamic load cycling for syngas production[J].Journal of Power Sources,2020,451:227781. |
[1] | Nannan JING, Wenhong LIU, Qiang LI, Qingqing LI, Xia WANG, Jianzhuang YAO. Research Progress of PET Plastic Degradation and Modification Methods of Degrading Enzymes [J]. Journal of Petrochemical Universities, 2024, 37(1): 16-24. |
[2] | Yaning XU, Jianing YAN, Lulu WANG, Jilin WANG. Preparation and Characterization of A Functional Polysulfone Anion Exchange Membrane of Polyethylene Glycol Modified Crown Ether [J]. Journal of Petrochemical Universities, 2024, 37(1): 59-65. |
[3] | Yutai Wu, Jiaqi Wang, Dan Li, Xu Hu, Yongsheng Wang, Guangping Hao. Preparation of Bimetallic⁃Nitrogen Doped Carbon Catalysts and Electrocatalytic CO2 Performance [J]. Journal of Petrochemical Universities, 2023, 36(3): 1-10. |
[4] | Gaojun An, Zhenzhen Xue, Ximeng Xu, Yangfeng Xia, Yawen Liu, Changbo Lu, Zhe Zheng. Study on the Application Performance of Polyoxymethylene Dimethyl Ethers [J]. Journal of Petrochemical Universities, 2023, 36(1): 16-24. |
[5] | Hong Boyan. Application and Development of Advanced Control System of Average COT Temperature in the Ethylene Cracking Furnace [J]. Journal of Petrochemical Universities, 2019, 32(2): 92-97. |
[6] | Yang Lei,Fan Xiaoguang,Wang Zhanyong. Cracking Performance for Feedstock of Ethylene Unit [J]. Journal of Petrochemical Universities, 2018, 31(5): 22-26. |
[7] | Zhang Mingfeng, Li Jun. Development and Performance Evluation on a Crosslinker of Water Shutoff Agent [J]. Journal of Petrochemical Universities, 2016, 29(3): 64-68. |
[8] | Deng Ye,Wang Yiwei, Guo Xuqiang,et al. Promotion Effect of Surfactant on Formation of Ethylene Hydrate [J]. Journal of Petrochemical Universities, 2015, 28(6): 1-8. |
[9] | Zhang Yuntong, Yue Lin, Wang Siyu,et al. Research of Composition and Coking Behavior of Ethylene Cracking Tar [J]. Journal of Petrochemical Universities, 2015, 28(4): 22-26. |
[10] | Wang Xiaohong, Guo Fangrong, Gao Chuanhui, et al. Modification of Poly(Butylene TerephthalatecoButylene Itaconate) Copolyesters [J]. Journal of Petrochemical Universities, 2015, 28(1): 12-15. |
[11] | Xu Shuang, Tai Baoquan, Li Xiaoyan, Wu Jing. Study on Acetylene Hydrogenation Catalysts Modified by Disulfide [J]. Journal of Petrochemical Universities, 2014, 27(4): 1-5. |
[12] | ZHANG Lei,JIANG Heng,WANG Hong,et al. Preparation and Application of NonMercury Catalysts for Acetylene Hydrochlorination [J]. Journal of Petrochemical Universities, 2013, 26(6): 6-11. |
[13] | LI Xiuping,DONG Hang,LI Chujia,et al. Preparation of HighPurityand White CeO2 by ComplexPrecipitation Method and Its Photocatalytic Activit [J]. Journal of Petrochemical Universities, 2013, 26(5): 15-18. |
[14] | LI Ying, LIU Mei, ZHAO De-zhi. Blending Technology and Study on the Stability of Marine Fuel [J]. Journal of Petrochemical Universities, 2012, 25(6): 14-17. |
[15] | GUAN Yue, SUN Wan-fu, ZHANG Zhi-zhi,et al. Thermodynamic Analysis on the Formation of Acrylic Acid from CO2 and C2H4 [J]. Journal of Petrochemical Universities, 2012, 25(3): 6-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Petrochemical Universities
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56860967 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.