Journal of Petrochemical Universities ›› 2025, Vol. 38 ›› Issue (5): 69-80.DOI: 10.12422/j.issn.1006-396X.2025.05.009

• Catalysts and Catalytic Materials • Previous Articles    

Intrinsic Kinetic and Simulation Study of Methanol Steam Reforming

Sumin LI(), Shicheng DONG, Rensheng SONG, Bin WANG, Wei GAO, Liwei PAN()   

  1. College of Environmental and Chemical Engineering,Dalian University,Dalian Liaoning 116622,China
  • Received:2024-04-23 Revised:2025-08-25 Published:2025-10-25 Online:2025-10-20
  • Contact: Liwei PAN

甲醇水蒸气重整本征动力学和模拟研究

李谡民(), 董世城, 宋仁升, 王斌, 高伟, 潘立卫()   

  1. 大连大学 环境与化学工程学院,辽宁 大连 116622
  • 通讯作者: 潘立卫
  • 作者简介:李谡民(1996-),男,硕士研究生,从事重整制氢、动力学、化工过程模拟方面的研究;E-mail:lisumin96@sina.com
  • 基金资助:
    大连市科技创新基金项目(2022JJ12GX021);大连市科技人才创新支持政策计划项目(2022RQ061)

Abstract:

In order to resolve the limitation of the built-in catalyst database in Aspen simulations,a dual-rate kinetic model based on the Power Law (PL) formulation is proposed.The kinetic model is integrated into Aspen Plus for multi-process simulation of hydrogen production.By incorporating the influence of catalysts on the reactions during the simulation,a more realistic chemical process simulation is achieved.The dual-rate kinetic model accurately reflects actual hydrogen production conditions: increasing temperature and reducing liquid hourly space velocity (LHSV) both enhance methanol conversion and simultaneously increase CO selectivity.The steam-to-carbon molar ratio has a minor impact on the reaction.By considering energy consumption,the optimal range of the steam-to-carbon molar ratio is 1.0~1.4.Under the condition in which the reaction temperature is 280 °C and the feed flow rate is 1.5 mL/min,the multi-process simulation results demonstrate that the CO concentration in the product is reduced to only 6.89 μL/L after methanol steam reforming, water-vapor shift,and CO selective oxidation.This CO concentration meets the requirements for proton exchange membrane fuel cells(PEMFC).

Key words: Methanol steam reforming, Intrinsic kinetic, Aspen Plus, Hydrogen production, Progress simulation

摘要:

为解决Aspen化工模拟中自带催化剂数据库的局限性,提出一种PL(Power Law)型双速率动力学模型,将动力学模型导入Aspen Plus进行制氢多过程模拟,考察了在模拟过程中引入催化剂对反应的影响,旨在实现更真实的化工过程模拟。结果表明,该双速率动力学模型可以反映真实的制氢状况;提高温度和降低液时空速,均有利于提高甲醇转化率,但同时增大CO的选择性;水碳物质的量比(水碳比)对反应的影响较小,考虑能源消耗选择水碳比1.0~1.4为宜;当反应温度为280 ℃、进料流速为1.5 mL/min时,经甲醇水蒸气重整、水汽变换和CO催化氧化后,产物中CO的体积分数仅为6.89 μL/L,产物可用于质子交换膜燃料电池(PEMFC)的应用中。

关键词: 甲醇水蒸气重整, 本征动力学, Aspen Plus, 制氢, 过程模拟

CLC Number: 

Cite this article

Sumin LI, Shicheng DONG, Rensheng SONG, Bin WANG, Wei GAO, Liwei PAN. Intrinsic Kinetic and Simulation Study of Methanol Steam Reforming[J]. Journal of Petrochemical Universities, 2025, 38(5): 69-80.

李谡民, 董世城, 宋仁升, 王斌, 高伟, 潘立卫. 甲醇水蒸气重整本征动力学和模拟研究[J]. 石油化工高等学校学报, 2025, 38(5): 69-80.