1 |
殷伊琳. 我国氢能产业发展现状及展望[J].化学工业与工程, 2021, 38(4): 78⁃83.
|
|
Yin Y L. Present situation and prospect of hydrogen energy industry[J]. Chemical Industry and Engineering, 2021, 38(4): 78⁃83.
|
2 |
Ma Y F, Guan G Q, Phanthong P, et al. Steam reforming of methanol for hydrogen production over nanostructured wire⁃like molybdenum carbide catalyst[J]. International Journal of Hydrogen Energy, 2014, 39(33): 18803⁃18811.
|
3 |
Kawamura Y, Ogura N, Igarashi A. Hydrogen production by methanol steam reforming using microreactor[J]. Journal of the Japan Petroleum Institute, 2013, 56(5): 288⁃297.
|
4 |
Iulianelli A, Ribeirinha P, Mendes A, et al. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 29(1): 355⁃368.
|
5 |
孙晓明, 沙琪昊, 王陈伟,等. 用于甲醇重整制氢的铜基催化剂研究进展[J]. 化工学报, 2021, 72(12): 5975⁃6001.
|
|
Sun X M, Sha Q H, Wang C W,et al. Application of copper⁃based catalysts for hydrogen production in methanol steam reforming[J]. Journal of Chemical Industry and Engineering, 2021, 72(12): 5975⁃6001 .
|
6 |
Mierczynski P, Mosinska M, Maniukiewicz W, et al. Oxy⁃steam reforming of methanol on copper catalysts[J]. Reaction Kinetics Mechanisms and Catalysis, 2019, 127(2): 857⁃874.
|
7 |
Liu Y Y, Hayakawa T, Tsunoda T, et al. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Topics in Catalysis, 2003, 22(3⁃4): 205⁃213.
|
8 |
Landi G, Barbato P S, Benedetto A D, et al. Optimization of the preparation method of CuO/CeO2, structured catalytic monolith for CO preferential oxidation in H2⁃rich streams[J]. Applied Catalysis B⁃Environmental, 2016, 181(8): 727⁃737.
|
9 |
Liu X, Men Y, Wang J G, et al. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming[J]. Journal of Power Sources, 2017, 364(29): 341⁃350.
|
10 |
Guo X L, Zhou R X. Identification of the nano/micro structure of CeO2(rod) and the essential role of interfacial copper⁃ceria interaction in CuCe(rod) for selective oxidation of CO in H2⁃rich streams[J]. Journal of Power Sources, 2017, 361(25): 39⁃53.
|
11 |
刘玉娟, 许骥, 佟宇飞, 等. 氧化铈纳米材料合成方法的研究进展[J]. 辽宁石油化工大学学报, 2017, 37(5): 8⁃12.
|
|
Liu Y J, Xu J, Tong Y F, et al. Progress in research of the synthesis methods of nanometer ceria[J]. Journal of Liaoning Shihua University, 2017, 37(5): 8⁃12.
|
12 |
王东哲, 田志强, 张宣娇, 等. 制备方法对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 石油化工, 2019, 48(4): 335⁃341.
|
|
Wang D Z, Tian Z Q, Zhang X J, et al. Effect of preparation methods on performance of CuO/CeO2 catalyst for hydrogen production from methanol steam reforming[J]. Petrochemical Technology, 2019, 48(4): 335⁃341 .
|
13 |
Lykaki M, Pachatouridou E, Iliopoulou E. Impact of synthesis parameters on the solid state properties and the CO oxidation performance of ceria nanoparticles[J]. RSC Advances, 2017, 7(10): 6160⁃6169.
|
14 |
Niu X. Hydrothermal synthesis and optical properties of the monodisperse spindle⁃shaped CeO2 microstructures[J]. Russian Journal of Physical Chemistry, 2018, 92(4): 768⁃771.
|
15 |
Meng F, Wu H, Gao C. Hydrothermal synthesis of monocrystalline CeO2 polymeric nano⁃balls and their optical properties[J]. Russian Journal of Physical Chemistry A, 2021, 95(4): 754⁃761.
|
16 |
王金果, 陈菲菲, 曹锋雷, 等.多孔单晶CeO2空壳球的制备及其CO催化氧化性能研究[J].上海师范大学学报(自然科学版), 2013, 42(3): 288⁃292.
|
|
Wang J G, Chen F F, Cao F L, et al. Synthesis of mesocrystal CeO2 hollow spheres and their catalytic performance on CO oxidation[J]. Journal of Shanghai Normal University (Natural Sciences), 2013, 42(3): 288⁃292 .
|
17 |
赵艳娜, 姬定西. 纳米CeO2/水性聚氨酯复合材料的制备及性能[J]. 化工进展, 2017, 36(12): 4501⁃4507.
|
|
Zhao Y N, Ji D X. Preparation and properties of nano CeO2/waterborne polyurethane composites[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4501⁃4507.
|
18 |
贺建平, 张磊, 陈琳, 等. CeO2改性Cu/Zn⁃Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J]. 高等学校化学学报, 2017, 38(10): 1822⁃1828.
|
|
He J P, Zhang L, Chen L, et al. Effect of CeO2 modified Cu/Zn⁃Al water derived catalyst on hydrogen production performance of methanol water vapor reforming[J]. Chemical Journal of Chinese University, 2017, 38(10): 1822⁃1828.
|
19 |
Jung W Y, Hong S S. Complete oxidation of benzene over CuO⁃CeO2 catalysts prepared using different process[J]. Journal of Nanosci Nanotechnol, 2016, 16(5): 4576⁃4579.
|
20 |
Zhang L, Pan L W, Ni C J, et al. CeO2⁃ZrO2⁃promoted CuO/ZnO catalyst for methanol steam reforming[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4397⁃4406.
|
21 |
Yang S Q, Zhou F, Liu Y J, et al. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7252⁃7261.
|
22 |
Zhang F, Liu Y, Xu X Y, et al. Effect of Al⁃containing precursors on Cu/ZnO/Al2O3 catalyst for methanol production[J]. Fuel Processing Technology, 2018, 178(9): 148⁃155.
|
23 |
邢月,杨劭杰,曹利星,等.甲醇水蒸气重整制氢CuO⁃ZnO/CeO2催化剂的制备及性能[J].石油化工, 2022, 51(9): 1011⁃1016.
|
|
Xing Y, Yang S J, Cao L X, et al. Preparation and performance of CuO⁃ZnO/CeO2 catalyst for producing hydrogen via methanol steam reforming[J]. Petrochemical Technology, 2022, 51(9): 1011⁃1016.
|
24 |
冯旭, 林宇, 张财顺, 等. 水热合成温度对CuO/CeO2催化甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报, 2022, 50(7): 832⁃840.
|
|
Feng X, Lin Y, Zhang C S, et al. Effects of hydrothermal reaction temperatures on the performance of CuO/CeO2 catalyst for hydrogen production from steam reforming methanol[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 832⁃840.
|