在水电解过程中,“气泡效应”会显著降低系统的整体性能;经典成核理论(CNT模型)难以揭示实际电化学体系中双电层(EDL)、表面微结构和传质协同作用对成核动力学的调控机制。研究综合考虑离子迁移?扩散行为、电极表面纳微结构及浓度边界层对成核过程的协同调控机制,构建了双电层?传质?表面微结构协同作用的电极界面气泡成核模型。结果表明,EDL与微孔结构的协同作用会在表面微孔处产生显著的电位梯度,导致局部过饱和度升高,优先诱发气泡成核;在高过电位下,浓度边界层与成核能垒呈非线性关系,浓度边界层越薄,高电位的成核速率降低趋势越显著;气泡生长过程受三相接触线(TPCL)附近的净浓度通量控制,并呈现两阶段生长特征。研究结果为优化析气电极表面设计提供了理论依据。