1 |
贾婧, 王秋帏, 王小赫, 等. 废磷酸系刻蚀液制备电池级磷酸铁[J]. 化工环保, 2023, 43(4): 484⁃491.
|
|
JIA J, WANG Q W, WANG X H, et al. Preparation of battery grade iron phosphate from spent phosphoric acid based etching solution[J]. Environmental Protection of Chemical Industry, 2023, 43(4): 484⁃491.
|
2 |
王昱官, 王伟. 二硒化锡纳米片的制备及其储钠行为研究[J]. 低碳化学与化工, 2023, 48(6): 76⁃82.
|
|
WANG Y G, WANG W. Study on preparation of tin diselenide nanosheets and their sodium storage behaviors[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(6): 76⁃82.
|
3 |
王明华. 国内氢能应用场景分析及发展前景预测[J]. 石油炼制与化工, 2023, 54(9): 18⁃23.
|
|
WANG M H. Application scenarios analysis and development prospect prediction of domestic hydrogen energy[J]. Petroleum Processing and Petrochemicals, 2023, 54(9): 18⁃23.
|
4 |
冯莲晶, 王利娟. Sn4P3⁃G@C负极在锂离子电池中的应用[J]. 石油化工高等学校学报, 2023, 36(1): 66⁃73.
|
|
FENG L J, WANG L J. Applications of Sn4P3⁃G@C anodes in liion batteries[J]. Journal of Petrochemical Universities, 2023, 36(1): 66⁃73.
|
5 |
王立福, 卢汇嘉, 许航, 等. 溶胶⁃凝胶法合成钛酸锌锂负极材料[J]. 辽宁石油化工大学学报, 2024, 44(1): 21⁃28.
|
|
WANG L F, LU H J, XU H, et al. Synthesis of lithium zinc titanate anodes by a Sol⁃Gel method[J]. Journal of Liaoning Petrochemical University, 2024, 44(1): 21⁃28.
|
6 |
THOMAS R, GURGUL M, XAVIER B, et al. Lithium and sodium storage performance of tin oxyphosphate anode materials[J]. Applied Surface Science, 2022, 579: 152126.
|
7 |
PAN J, WANG N N, LI L L, et al. Improved Na storage and coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries[J]. Nano Research, 2021, 14(1): 139⁃147.
|
8 |
LI Y M, LI J H. Carbon⁃coated macroporous SnP2O7 as anode materials for Li⁃ion battery[J]. The Journal of Physical Chemistry C, 2008, 112(36): 14216⁃14219.
|
9 |
WU T F, DAI G L, QIN C C, et al. A novel method to synthesize SnP2O7 spherical particles for lithium⁃ion battery anode[J]. Ionics, 2016, 22(12): 2315⁃2319.
|
10 |
沈紫烨. 钛酸锌锂的制备及宽温度范围储锂性能研究[D]. 抚顺: 辽宁石油化工大学, 2021.
|
11 |
WU Q, WANG J Z, WANG H G, et al. Doped graphene encapsulated SnP2O7 with enhanced conversion reactions from polyanions as a versatile anode material for sodium dual⁃ion battery[J]. Electrochimica Acta, 2021, 369: 137657.
|
12 |
PAN J, CHEN S L, ZHANG D P, et al. SnP2O7 covered carbon nanosheets as a long⁃life and high⁃rate anode material for sodium⁃ion batteries[J]. Advanced Functional Materials, 2018, 28(43): 1804672.
|
13 |
BAI L C, PANG X Z, SUN Y F, et al. N⁃doped graphene wrapped SnP2O7 for sodium storage with high pseudocapacitance contribution[J]. Journal of Alloys and Compounds, 2021, 854: 156992.
|
14 |
BEARD J D, EICHHORN S J. Highly porous thermoplastic composite and carbon aerogel from cellulose nanocrystals[J]. Materials Letters, 2018, 221: 248⁃251.
|
15 |
SHI Y W, LIU G Z, WANG L, et al. Heteroatom⁃doped porous carbons from sucrose and phytic acid for adsorptive desulfurization and sulfamethoxazole removal: A comparison between aqueous and non⁃aqueous adsorption[J]. Journal of Colloid and Interface Science, 2019, 557: 336⁃348.
|
16 |
GUO X Z, WAN Z W, WEI D, et al. Dual‐carbon confined SnP2O7 with enhanced pseudocapacitances for improved Li/Na‐ion batteries[J]. ChemElectroChem, 2021, 8(14): 2708⁃2714.
|
17 |
ZHANG X, XU H R, LIU H H, et al. Lithium storage of SnP2O7 anode coated by N⁃doped carbon and anchored on P⁃doped carbon framework[J]. Applied Surface Science, 2024, 647: 158968.
|
18 |
ZHU J, SHANG C, WANG X, et al. Co2P/Sn4P3 particle encapsulated in N, P codoped carbon nanocubes for efficient sodium storage[J]. Materials Today Chemistry, 2021, 19: 100389.
|
19 |
PAN E Z, JIN Y H, ZHAO C C, et al. Dopamine⁃derived N⁃doped carbon encapsulating hollow Sn4P3 microspheres as anode materials with superior sodium storage performance[J]. Journal of Alloys and Compounds, 2018, 769: 45⁃52.
|
20 |
HOU Q R, ZHOU Y, ZHU L, et al. Sn4P3⁃inlaid graphene oxide nanohybrid through low⁃temperature solid state reactions toward high⁃performance anode for sodium⁃ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123: 199⁃205.
|
21 |
ZHAO Q, ZHAO D, FENG L, et al. SnP entangled by carbon nanotube networks as anode for pseudocapacitive half/full battery[J]. Journal of Materiomics, 2023, 9(2): 362⁃369.
|
22 |
LIU S L, ZHANG H Z, XU L Q, et al. High lithium storage performance of mn⁃doped Sn4P3 nanoparticles[J]. Electrochimica Acta, 2016, 210: 888⁃896.
|
23 |
MENG J K, WANG W W, WANG Q C, et al. Graphene supported ultrafine tin oxide nanoparticles enable conversion reaction dominated mechanism for sodium⁃ion batteries[J]. Electrochimica Acta, 2019, 303: 32⁃39.
|
24 |
ZHANG X Q, HUANG X X, ZHANG X D, et al. Cotton/rGO/carbon⁃coated SnO2 nanoparticle⁃composites as superior anode for lithium ion battery[J]. Materials & Design, 2017, 114: 234⁃242.
|
25 |
LIU H, XU M Y, WEI C B, et al. SnCl2⁃induced SnO2 nanoparticles uniformly anchored in the interpenetrating network porous structure of electrode⁃membranes to relieve volume expansion and enhance lithium storage performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127348.
|
26 |
WANG Y, SHI H T, NIU J R, et al. Self⁃healing Sn4P3@Hard carbon co⁃storage anode for sodium⁃ion batteries[J]. Journal of Alloys and Compounds, 2021, 851: 156746. (编辑 喻育红)
|