| 1 |
NOAA.Trends in atmospheric carbon dioxide/monthly average mauna loa CO2[EB/OL].(2022⁃11⁃15)[2022⁃01⁃05].https://gml.noaa.gov/ccgg/trends/.
|
| 2 |
Nandy A,Loha C,Gu S,et al.Present status and overview of chemical looping combustion technology[J].Renewable and Sustainable Energy Reviews,2016,59:597‐619.
|
| 3 |
Koytsoumpa E I,Bergins C,Kakaras E.The CO2 economy:Review of CO2 capture and reuse technologies[J].The Journal of Supercritical Fluids,2018,132:3‐16.
|
| 4 |
周宏春.碳达峰碳中和需要创新驱动和技术支撑[J].科技与金融,2021(9):51⁃52.
|
|
Zhou H C.Carbon peaking and carbon neutrality require innovation⁃driven and technological support[J].Sci⁃Tech Finance Monthly,2021(9):51⁃52.
|
| 5 |
Chen W,Filot A W,Pestman R,et al.Mechanism of cobalt⁃catalyzed CO hydrogenation:2.Fischer⁃tropsch synthesis[J].ACS Catalysis,2017,7(12):8061⁃8071.
|
| 6 |
王彦,王晓月,曹瑞文,等.二氧化碳加氢制甲醇反应机理研究进展[J].辽宁石油化工大学学报,2020,40(4):11⁃20.
|
|
Wang Y,Wang X Y,Cao R W,et al.Research progress of reaction mechanism of carbon dioxide hydrogenation to methanol[J].Journal of Liaoning Shihua University,2020,40(4):11⁃20.
|
| 7 |
Melaet G,Ralston W T,Li C S,et al.Evidence of highly active cobalt oxide catalyst for the fischer–tropsch synthesis and CO2 hydrogenation[J].Journal of the American Chemical Society,2014,136(6):2260⁃2263.
|
| 8 |
Zhao G,Huang X,Wang X,et al.Progress in catalyst exploration for heterogeneous CO2 reduction and utilization:A critical review[J].Journal of Materials Chemistry A,2017,5(41):21625⁃21649.
|
| 9 |
殷中枢,郭建伟,王博,等.二氧化碳电化学还原催化剂[J].科学技术与工程,2013,13(35):10560⁃10570.
|
|
Yin Z S,Guo J W,Wang B,et al.Catalysts for electrochemical reduction of carbon dioxide[J].Science Technology and Engineering,2013,13(35):10560⁃10570.
|
| 10 |
Zhang S,Fan Q,Xia R,et al.CO2 reduction:From homogeneous to heterogeneous electrocatalysis[J].Accounts of Chemical Research,2020,53(1):255⁃264.
|
| 11 |
周睿,韩娜,李彦光,等.铋基二氧化碳还原电催化材料研究进展[J].电化学,2019,25(4):445⁃454.
|
|
Zhou R,Han N,Li Y G,et al.Recent advances in bismuth⁃based CO2 reduction electrocatalysts[J].Journal of Electrochemistry,2019,25(4):445⁃454.
|
| 12 |
Schneider J,Jia H,Muckerman J T,et al.Thermodynamics and kinetics of CO2,CO,and H+ binding to the metal center of CO2 reduction catalysts[J].Chemical Society Reviews,2012,41(6):2036⁃2651.
|
| 13 |
Dang T N,Younghye K,Yun J H,et al.Progress in development of electrocatalyst for CO2 conversion to selective CO production[J].Carbon Energy,2020,2(1):72⁃98.
|
| 14 |
Sun Z Y,Ma T,Tao H C,et al.Fundamentals and challenges of electrochemical CO2 reduction using two⁃dimensional materials[J].Chemistry,2017,3(4):560⁃587.
|
| 15 |
郑元波,张前,石坚,等.电催化还原 CO2 生成多种产物催化剂研究进展[J].化工进展,2022,41(3):1209⁃1223.
|
|
Zheng Y B,Zhang Q,Shi J,et al.Research progress of catalysts for electrocatalytic reduction of CO2 to various products[J].Chemical Industry and Engineering Progress,2022,41(3):1209⁃1223.
|
| 16 |
张钰宁,钮东方,胡硕真,等.基于纳米金属的增强效应在CO2电还原反应中的应用进展[J].电化学,2020,26(4):495⁃509.
|
|
Zhang Y N,Niu D F,Hu S Z,et al.Research progress on enhancing effect of nanosized metals for electrochemical CO2 reduction[J].Journal of Electrochemistry,2020,26(4):495⁃509.
|
| 17 |
Mahyoub S A,Qaraah F A,Chen C,et al.An overview on the recent developments of Ag⁃based electrodes in the electrochemical reduction of CO2 to CO[J].Sustainable Energy & Fuels,2020,4(1):50⁃67.
|
| 18 |
Gao D,Zhou H,Wang J,et al.Size⁃dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J].Journal of the American Chemical Society,2015,137(13):4288⁃4291.
|
| 19 |
Mistry H,Reske R,Zeng Z,et al.Exceptional size⁃dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles[J].Journal of the American Chemical Society,2014,136(47):16473⁃16476.
|
| 20 |
Yang D R,Liu L,Zhang Q,et al.Importance of Au nanostructures in CO2 electrochemical reduction reaction[J].Science Bulletin,2020,65(10):796⁃802.
|
| 21 |
Liu S,Sun C,Xiao J,et al.Unraveling structure sensitivity in CO2 electroreduction to near unity CO on silver nanocubes[J].ACS Catalysis,2020,10(5):3158⁃3163.
|
| 22 |
Dong H,Zhang L,Yang P,et al.Facet design promotes electroreduction of carbon dioxide to carbon monoxide on palladium nanocrystals[J].Chemical Engineering Science,2019,194:29⁃35.
|
| 23 |
Liu S,Wang X, Tao H,et al.Thin 5⁃fold twinned sub⁃25 nm silver nanowires enable highly selective electroreduction of CO2 to CO[J].Nano Energy,2018,45:456⁃462.
|
| 24 |
Fan T,Wu Q,Yang Z,et al.Electrochemically driven formation of sponge⁃like porous silver nanocubes toward efficient CO2 electroreduction to CO[J].ChemSusChem,2020,13(10):2677⁃2683.
|
| 25 |
Lu Y,Han B,Tian C,et al.Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network[J].Electrochemistry Communications,2018,97:87⁃90.
|
| 26 |
Li Y H,Liu P F,Li C Z,et al.Sharp⁃tipped zinc nanowires as an efficient electrocatalyst for carbon dioxide reduction[J].Chemistry,2018,24(58):15486⁃15490.
|
| 27 |
Torelli D A,Francis S A,Crompton J C,et al.Nickel⁃gallium⁃catalyzed electrochemical eduction of CO2 to highly reduced products at low overpotentials[J].ACS Catalysis,2016,6(3):2100⁃2104.
|
| 28 |
Han N,Sun M,Zhou Y,et al.Alloyed palladium⁃silver nanowires enabling stable carbon dioxide reduction to formate[J].Advanced Materials,2021,33(4):2005821.
|
| 29 |
Gilroy K D,Ruditskiy A,Peng H C,et al.Bimetallic nanocrystals:Syntheses,properties,and applications[J].Chemical Reviews,2016,116(18):10414⁃10472.
|
| 30 |
Wang C,Cao M,Jiang X,et al.A catalyst based on copper⁃cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency[J].Electrochimica Acta,2018,271:544⁃550.
|
| 31 |
Luo W,Xie W,Mutschler R,et al.Selective and stable electroreduction of CO2 to CO at the copper/indium interface[J].ACS Catalysis,2018,8(7):6571⁃6581.
|
| 32 |
Zhu S,Wang Q,Qin X,et al.Tuning structural and compositional effects in Pd⁃Au nanowires for highly selective and active CO2 electrochemical reduction reaction[J].Advanced Energy Materials,2018,8(32):1802238.
|
| 33 |
Sun K,Cheng T,Wu L,et al.Ultrahigh mass activity for carbon dioxide reduction enabled by gold⁃iron core⁃shell nanoparticles[J].Journal of the American Chemical Society,2017,139(44):15608⁃15611.
|
| 34 |
Yoo C J,Dong W J,Park J Y,et al.Compositional and geometrical effects of bimetallic Cu⁃Sn catalysts on selective electrochemical CO2 Reduction to CO[J].ACS Applied Energy Materials,2020,3(5):4466⁃4473.
|
| 35 |
Wang M,Ren X,Yuan G,et al.Selective electroreduction of CO2 to CO over co⁃electrodeposited dendritic core⁃shell indium ⁃doped Cu@Cu2O catalyst[J].Journal of CO2 Utilization,2020,37:204⁃212.
|
| 36 |
Wang L,Peng H,Lamaison S,et al.Bimetallic effects on Zn⁃Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO[J].Chem Catalysis,2021,1(3):663⁃680.
|
| 37 |
Han J,Li S,Chen J,et al.Dendritic Ag/Pd alloy nanostructure arrays for electrochemical CO2 reduction[J].ChemElectroChem,2020,7(12):2608⁃2613.
|
| 38 |
苏文礼,范煜.金属基材料电催化CO2还原的研究进展[J].化工进展,2021,40(3):1384⁃1394.
|
|
Su W L,Fan Y.Progress of electrocatalytic reduction of CO2 on metal⁃based materials[J].Chemical Industry and Engineering Progress,2021,40(3):1384⁃1394.
|
| 39 |
Kornienko N,Zhao Y,Kley C S,et al.Metal⁃organic frameworks for electrocatalytic reduction of carbon dioxide[J].Journal of the American Chemical Society,2015,137(44):14129⁃14135.
|
| 40 |
Kumar B,Asadi M,Pisasale D,et al.Renewable and metal⁃free carbon nanofibre catalysts for carbon dioxide reduction[J].Nature Communications,2013,4(1):2819.
|
| 41 |
Jiang Z,Wang Y,Zhang X,et al.Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes[J].Nano Research,2019,12(9):2330⁃2334.
|
| 42 |
Zhu M,Chen J,Guo R,et al.Cobalt phthalocyanine coordinated to pyridine⁃functionalized carbon nanotubes with enhanced CO2 electroreduction[J].Applied Catalysis B:Environmental,2019,251:112⁃118.
|
| 43 |
Choi J,Wagner P,Jalili R,et al.A porphyrin/graphene framework:A highly efficient and robust electrocatalyst for carbon dioxide reduction[J].Advanced Energy Materials,2018,8(26):1801280.
|
| 44 |
Zhang X,Wang Y,Gu M,et al.Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J].Nature Energy,2020,5(9):1⁃9.
|
| 45 |
Wang M,Torbensen K,Salvatore D,et al.Electrochemical catalytic reduction with a highly active cobalt phthalocyanine[J].Nature Communications,2019,10(1):3602⁃3609.
|
| 46 |
Zhang X,Wu Z,Zhang X,et al.Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J].Nature Communications,2017,8:14675.
|
| 47 |
Lan Y Q,Lu M,Zhang M,et al.Stable dioxin⁃linked metallophthalocyanine covalent organic frameworks as photo⁃coupled electrocatalysts for CO2 reduction[J].Angewandte Chemie International Edition,2020,60(9):4864⁃4871.
|
| 48 |
Liu J.Catalysis by supported single metal atoms[J].ACS Catalysis,2016,7(1):34⁃59.
|
| 49 |
Yuan C Z,Li H B,Jiang Y F,et al.Tuning the activity of N⁃doped carbon for CO2 reduction via in situ encapsulation of nickel nanoparticles into nano⁃hybrid carbon substrates[J].Journal of Materials Chemistry A,2019,7(12):6894⁃6900.
|
| 50 |
Li Z,He D,Yan X,et al.Size⁃dependent nickel⁃based electrocatalysts for selective CO2 reduction[J].Angewandte Chemie,2020,59(42):18572⁃18577.
|
| 51 |
Gu J,Hsu C S,Bai L,et al.Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J].Science,2019,364(6445):1091⁃1094.
|
| 52 |
Tran N H,Nastaran R,Gwenaëlle R,et al.Electrochemical reduction of CO2 catalyzed by Fe-N-C materials:A structure ⁃selectivity study[J].ACS Catalysis,2017,7(3):1520⁃1525.
|
| 53 |
Yan C C,Li H,Ye Y F,et al.Coordinatively unsaturated nickel⁃nitrogen sites towards selective and high⁃rate CO2 electroreduction[J].Energy & Environmental Science:EES,2018,11(5):1204⁃1210.
|
| 54 |
Wu Q,Liang J,Xie Z L,et al.Spatial sites separation strategy to fabricate atomically isolated nickel catalysts for efficient CO2 electroreduction[J].ACS Materials Letters,2021,3(5):454⁃461.
|
| 55 |
Zhang C,Yang S,Wu J,et al.Electrochemical CO2 reduction with atomic iron⁃dispersed on nitrogen⁃doped graphene[J].Advanced Energy Materials,2018,8(19):1703487.
|
| 56 |
Wang X,Chen Z,Zhao X,et al.Regulation of coordination number over single Co sites:Triggering the efficient electroreduction of CO2[J].Angewandte Chemie,2018,130(7):1962⁃1966.
|
| 57 |
Gong Y N,Jiao L,Qian Y,et al.Regulating the coordination environment of MOF⁃templated single⁃atom nickel electrocatalysts for boosting CO2 reduction[J].Angewandte Chemie International Edition,2020,59(7):2705⁃2709.
|
| 58 |
Wang A,Li J,Zhang T.Heterogeneous single⁃atom catalysis[J].Nature Reviews Chemistry,2018,2:65⁃81.
|
| 59 |
Ju W,Bagger A,Hao G P,et al.Understanding activity and selectivity of metal⁃nitrogen⁃doped carbon catalysts for electrochemical reduction of CO2[J].Nature Communications,2017,8(1):944.
|
| 60 |
Zhao C,Dai X,Yao T,et al.Ionic exchange of metal⁃organic frameworks to access single nickel sites for efficient electroreduction of CO2[J].Journal of the American Chemical Society,2017,139(24):8078⁃8081.
|
| 61 |
Li X,Wang S,Li L,et al.Progress and perspective for In situ studies of CO2 reduction[J].Journal of the American Chemical Society,2020,142(21):9567⁃9581.
|