1 |
ZHAO W B, CHEN D D, LIU K K, et al. Near⁃infrared Ⅰ/Ⅱ emission and absorption carbon dots via constructing localized excited/charge transfer state for multiphoton imaging and photothermal therapy[J]. Chemical Engineering Journal, 2023, 452(Part 2): 139231.
|
2 |
LI J Y, DUAN J H, LIAO Y J, et al. Surface modification of Nd3+ activated gadolinium core⁃shell nanospheres for near⁃infrared and magnetic resonance dual functional bioimaging system[J]. Materials & Design, 2023, 232: 112132.
|
3 |
MUKHERJEE P, GUHA S, DAS G, et al. NIR light⁃activated upconversion POP nanofiber composite; an effective carrier for targeted photodynamic therapy and drug delivery[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 443: 114907.
|
4 |
ROY S, BAG N, BARDHAN S, et al. Recent progress in NIR⁃Ⅱ fluorescence imaging⁃guided drug delivery for cancer theranostics[J]. Advanced Drug Delivery Reviews, 2023, 197: 114821.
|
5 |
ITO Y, KOMENO A, UEMATSU K, et al. Luminescence properties of long⁃persistence silicate phosphors[J]. Journal of Alloys and Compounds, 2006, 408/412: 907⁃910.
|
6 |
王莹, 任浩, 关磊. 稀土发光纳米材料的制备与应用研究进展[J]. 辽宁石油化工大学学报, 2016, 36(4): 8⁃12.
|
|
WANG Y, REN H, GUAN L. Progress in research of preparation and application of rare earth luminescent nanomaterials[J]. Journal of Liaoning Shihua University, 2016, 36(4): 8⁃12.
|
7 |
孙强强, 亢小红. 蓝光激发KY(MoO4)2∶Pr3+荧光粉微晶玻璃的制备及发光性能研究[J]. 当代化工, 2020, 49(8): 1601⁃1604.
|
|
SUN Q Q, KANG X H. Preparation of KY(MoO4)2∶Pr3+ phosphors glass⁃ceramics and its luminescence properties under blue light excitation[J]. Contemporary Chemical Industry, 2020, 49(8): 1601⁃1604.
|
8 |
过诚, 丛妍, 董斌, 等. (Zn1- x,Mgx)2GeO4∶Mn2+的荧光以及长余辉发光性能[J]. 发光学报, 2017, 38(9): 1161⁃1166.
|
|
GUO C, CONG Y, DONG B, et al. Photoluminescence and long⁃lasting phosphorescence[J]. Chinese Journal of Luminescence, 2017, 38(9): 1161⁃1166.
|
9 |
MA Q Q, WANG J, LI Z H, et al. Recent progress in time‐resolved biosensing and bioimaging based on lanthanide‐doped nanoparticles[J]. Small, 2019, 15(32): 1804969.
|
10 |
陈忠保, 赵晓彦, 郭绍辉. 新型稀土防老剂的合成及对天然橡胶防护性能的研究[J]. 石油化工高等学校学报, 2013, 26(3): 23⁃29.
|
|
CHEN Z B, ZHAO X Y, GUO S H. Synthesis of a rare earth antioxidant and its anti⁃aging properties for natural rubber vulcanizates[J]. Journal of Petrochemical Universities, 2013, 26(3): 23⁃29.
|
11 |
ALLIX M, CHENU S, VÉRON E, et al. Considerable improvement of long⁃persistent luminescence in germanium and Tin substituted ZnGa2O4[J]. Chemistry of Materials, 2013, 25(9): 1600⁃1606.
|
12 |
LU Z Z, FAN H, OU Y J, et al. Engineering the local structure of ZnGa2O4: Cr3+ via Mg substitution to realize superior luminescence[J]. Ceramics International, 2023, 49(6): 9985⁃9991.
|
13 |
TANABE Y, SUGANO S. On the absorption spectra of complex Ions.I[J]. Journal of the Physical Society of Japan, 1954, 9(5): 753⁃766.
|
14 |
YANG J, LIU Y X, YAN D T, et al. A vacuum⁃annealing strategy for improving near⁃infrared super long persistent luminescence in Cr3+ doped zinc gallogermanate nanoparticles for bio⁃imaging[J]. Dalton Transactions, 2016, 45(4): 1364⁃1372.
|
15 |
PAN Z W, LU Y Y, LIU F. Sunlight⁃activated long⁃persistent luminescence in the near⁃infrared from Cr3+⁃doped zinc gallogermanates[J]. Nature Materials, 2011, 11(1): 58⁃63.
|
16 |
VAN GORKOM G G P, HENNING J C M, VAN STAPELE R P. Optical spectra of Cr3+ pairs in the spinel ZnGa2O4[J]. Physical Review B, 1973, 8(3): 955⁃973.
|
17 |
GONG Z, LIU Y X, YANG J, et al. A Pr3+ doping strategy for simultaneously optimizing the size and near infrared persistent luminescence of ZGGO: Cr3+ nanoparticles for potential bio⁃imaging[J]. Physical Chemistry Chemical Physics, 2017, 19(36): 24513⁃24521.
|
18 |
ZHANG H S, YANG J, MENG Y Q, et al. Influences of Si doping on afterglow properties of Zn2Ga2.98Ge0.75- xSixO8: Cr3+0.02 nanoparicles for potential bioimaging[J]. Journal of Luminescence, 2019, 213: 197⁃203.
|
19 |
PAN J L, YU Y J, WANG Y K, et al. Lanthanide ion‐doped perovskite nanocrystals in electroluminescent device[J]. Advanced Functional Materials, 2024, 34(36): 2401327.
|
20 |
CHEN D Q, CHEN X, LI X Y, et al. Cr3+⁃doped Bi2Ga4O9⁃Bi2Al4O9 solid⁃solution phosphors: Crystal⁃field modulation and lifetime⁃based temperature sensing[J]. Optics Letters, 2017, 42(23): 4950⁃4953.
|
21 |
STRUVE B, HUBER G. The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals[J]. Applied Physics B, 1985, 36(4): 195⁃201.
|
22 |
FANG S Q, LI Y, CAI P Q, et al. Strong electron–phonon coupling of Cr3+ ion provides an opportunity for superior sensitivity cryogenic sensing[J]. Optics & Laser Technology, 2023, 158(Part A): 108844.
|
23 |
BESSIERE A, SHARMA S K, BASAVARAJU N, et al. Storage of visible light for long⁃lasting phosphorescence in chromium⁃doped zinc gallate[J]. Chemistry of Materials, 2014, 26(3):1365⁃1373.
|
24 |
DE VOS A, LEJAEGHERE K, VANPOUCKE D E P, et al. First⁃principles study of antisite defect configurations in ZnGa2O4: Cr persistent phosphors[J]. Inorganic Chemistry, 2016, 55(5): 2402⁃2412.
|
25 |
MODAK B. Energetic, electronic, and optical behavior of intrinsic charge carrier⁃trapping defects in Ge⁃doped ZnGa2O4: insights from a DFT study[J]. The Journal of Physical Chemistry C, 2023, 127(28): 13918⁃13928.
|
26 |
GONG Z, YANG J, ZHU H C, et al. The synergistically improved afterglow and magnetic resonance imaging induced by Gd3+ doping in ZGGO: Cr3+ nanoparticles[J]. Materials Research Bulletin, 2019, 113: 122⁃132.
|
27 |
WANG S, YANG J, LI Y Q, et al. The improved size distribution and NIR luminescence of ZGGO: Cr3+ nanoparticles induced by Y3+ doping[J]. Materials Research Bulletin, 2024, 169: 112507.
|
28 |
PAN Z W, LU Y Y, LIU F. Sunlight⁃activated long⁃persistent luminescence in the near⁃infrared from Cr3+⁃doped zinc gallogermanates[J]. Nature materials, 2012, 11(1): 58⁃63.
|
29 |
BESSIÈRE A, JACQUART S, PRIOLKAR K, et al. ZnGa2O4: Cr3+: A new red long⁃lasting phosphor with high brightness[J]. Optics Express, 2011, 19(11): 10131⁃10137.
|
30 |
LI S N, LIU Y X, LIU C G, et al. Improvement of X⁃ray storage properties of C12A7: Tb3+ photo⁃stimulable phosphors through controlling encaged anions[J]. Journal of Alloys and Compounds, 2017, 696: 828⁃835.
|