1 |
潘新慧, 陈人杰, 吴锋. 电化学储能技术发展研究[J]. 中国工程科学, 2023, 25(6): 225⁃236.
|
|
PAN X H, CHEN R J, WU F. Development of electrochemical energy storage technology[J]. Strategic Study of Chinese Academy of Engineerng, 2023, 25(6): 225⁃236.
|
2 |
FAN B, ZHANG B Q, SHI Y X, et al. A high⁃fidelity lithium⁃ion battery emulator for electric vehicle application[J]. Scientific Reports, 2024, 14(1): 19742.
|
3 |
CHANG X, ZHAO Y M, YUAN B H, et al. Solid⁃state lithium⁃ion batteries for grid energy storage: Opportunities and challenges[J]. Science China Chemistry, 2024, 67(1): 43⁃66.
|
4 |
MANTHIRAM A. An outlook on lithium ion battery technology[J]. ACS Central Science, 2017, 3(10): 1063⁃1069.
|
5 |
HWANG J Y, MYUNG S T, SUN Y K. Sodium⁃ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529⁃3614.
|
6 |
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium⁃ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636⁃11682.
|
7 |
SLATER M D, KIM D, LEE E, et al. Sodium⁃ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947⁃958.
|
8 |
LI M, ZHUO H X, JING Q H, et al. Low⁃temperature performance of Na⁃ion batteries[J]. Carbon Energy, 2024, 6(10): e546.
|
9 |
PAN H L, HU Y S, CHEN L Q. Room⁃temperature stationary sodium⁃ion batteries for large⁃scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338⁃2360.
|
10 |
ZHENG S M, TIAN Y R, LIU Y X, et al. Alloy anodes for sodium⁃ion batteries[J]. Rare Metals, 2021, 40(2): 272⁃289.
|
11 |
LI Z, WEI Y, ZHOU K, et al. A low redox potential and long life organic anode material for sodium⁃ion batteries[J]. Journal of Energy Chemistry, 2025, 100: 557⁃564.
|
12 |
王昱官, 王伟. 二硒化锡纳米片的制备及其储钠行为研究[J]. 低碳化学与化工, 2023, 48(6): 76⁃82.
|
|
WANG Y G, WANG W. Study on preparation of Tin diselenide nanosheets and their sodium storage behaviors[J]. Low⁃Carbon Chemistry and Chemical Engineering, 2023, 48(6): 76⁃82.
|
13 |
MA C Y, XU T T, WANG Y. Advanced carbon nanostructures for future high performance sodium metal anodes[J]. Energy Storage Materials, 2020, 25: 811⁃826.
|
14 |
LIU Y Y, MERINOV B V, GODDARD W A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735⁃3739.
|
15 |
RACCICHINI R, VARZI A, PASSERINI S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14(3): 271⁃279.
|
16 |
刘海燕, 苑仁鲁, 龙厚坤, 等. 纤维素衍生硬炭的结构调控和储钠性能研究[J]. 石油化工高等学校学报, 2024, 37(6): 62⁃73.
|
|
LIU H Y, YUAN R L, LONG H K, et al. Structure regulation and sodium storage performance of cellulose⁃based hard carbon[J]. Journal of Petrochemical Universities, 2024, 37(6): 62⁃73.
|
17 |
DING C F, HUANG L B, LAN J L, et al. Superresilient hard carbon nanofabrics for sodium⁃ion batteries[J]. Small, 2020, 16(11): e1906883.
|
18 |
DEY S C, WORFOLK B, LOWER L, et al. Phenolic resin derived hard carbon anode for sodium⁃ion batteries: A review[J]. ACS Energy Letters, 2024, 9(6): 2590⁃2614.
|
19 |
JIAN Z L, XING Z Y, BOMMIER C, et al. Hard carbon microspheres: Potassium⁃ion anode versus sodium⁃ion anode[J]. Advanced Energy Materials, 2016, 6(3): 1501874.
|
20 |
LUO W, BOMMIER C, JIAN Z L, et al. Low⁃surface⁃area hard carbon anode for na⁃ion batteries via graphene oxide as a dehydration agent[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2626⁃2631.
|
21 |
DOEFF M M, MA Y P, VISCO S J, et al. Electrochemical insertion of sodium into carbon[J]. Journal of The Electrochemical Society, 1993, 140(12): L169.
|
22 |
WU W, WANG A X, XU D H, et al. A soft carbon materials with engineered composition and microstructure for sodium battery anodes[J]. Nano Energy, 2024, 128(Part A): 109880.
|
23 |
XIANG D S, ZHU W Z, SUN Z H, et al. A new soft⁃hard carbon composite derived from petroleum coke and glucose for high⁃performance sodium storage[J]. Diamond and Related Materials, 2025, 152: 111894.
|
24 |
LUO W, JIAN Z L, XING Z Y, et al. Electrochemically expandable soft carbon as anodes for Na⁃ion batteries[J]. ACS Central Science, 2015, 1(9): 516⁃522.
|
25 |
CANÇADO L G, TAKAI K, ENOKI T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters, 2006, 88(16): 163106.
|
26 |
SADEZKY A, MUCKENHUBER H, GROTHE H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731⁃1742.
|
27 |
JIAN Z L, BOMMIER C, LUO L L, et al. Insights on the mechanism of Na⁃ion storage in soft carbon anode[J]. Chemistry of Materials, 2017, 29(5): 2314⁃2320.
|
28 |
HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial Coulombic efficiency of high⁃capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233⁃251.
|