Journal of Liaoning Petrochemical University ›› 2023, Vol. 43 ›› Issue (4): 19-29.DOI: 10.12422/j.issn.1672-6952.2023.04.004
• Material Science and New Energy(Synthesis and Properties of Crystalline Materials) • Previous Articles Next Articles
Yuluan Zhang(), Can Guo, Luanhua Zhou, Xiaoman Yao, Yiwen Yang, Huifen Zhuang, Yirong Wang, Yifa Chen(), Shunli Li, Yaqian Lan
Received:
2023-07-21
Revised:
2023-08-06
Published:
2023-08-25
Online:
2023-09-04
Contact:
Yifa Chen
张玉銮(), 郭璨, 周銮华, 姚晓曼, 杨仪雯, 庄惠芬, 王艺蓉, 陈宜法(), 李顺利, 兰亚乾
通讯作者:
陈宜法
作者简介:
张玉銮(1998⁃),女,硕士研究生,从事储能应用的COFs的设计与合成方面的研究;E⁃mail:zhang_yuluan@163.com。
基金资助:
CLC Number:
Yuluan Zhang, Can Guo, Luanhua Zhou, Xiaoman Yao, Yiwen Yang, Huifen Zhuang, Yirong Wang, Yifa Chen, Shunli Li, Yaqian Lan. Applications of Covalent Organic Frameworks in Li⁃S Battery Separators[J]. Journal of Liaoning Petrochemical University, 2023, 43(4): 19-29.
张玉銮, 郭璨, 周銮华, 姚晓曼, 杨仪雯, 庄惠芬, 王艺蓉, 陈宜法, 李顺利, 兰亚乾. 共价有机框架在锂硫电池隔膜中的应用综述[J]. 辽宁石油化工大学学报, 2023, 43(4): 19-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.lnpu.edu.cn/EN/10.12422/j.issn.1672-6952.2023.04.004
序号 | 基底 | 修饰材料 | 方法 | 硫载量/(mg•cm-2) | 循环性能/(mA·h·g-1) | 文献 |
---|---|---|---|---|---|---|
1 | 聚乙烯 | COF⁃1⁃CNT | 真空过滤 | 1.1 | 容量保留率84% (300次循环,2.0 C) | [ |
2 | Celgard | TP⁃BPY⁃COF | 刮涂 | 1.0~1.5 | 826.00 (250次循环,1.0 C) | [ |
3 | Celgard 2325 | SCOF⁃2 | 刮涂 | 1.2~2.0 | 497.00 (800次循环,1.0 C) | [ |
4 | PP隔膜 | COF⁃TpPa⁃SO3H@rGO | 刮涂 | 0.9 | 523.00 (1 000次循环,2.0 C) | [ |
5 | Celgard 2400 | TpPa⁃SO3H@PP | 原位界面聚合 | 1.0 | 645.62 (500次循环,1.0 C) | [ |
6 | Celgard 2400 | TAPP⁃ETTB@GO | 真空过滤 | 1.5~2.0 | 920.00 (400次循环,0.2 A/g) | [ |
7 | Celgard 2500 | COF⁃IL/PP/MOF | 刮涂 | 1.0~1.2 | 674.60 (100次循环,0.2 C) | [ |
8 | 陶瓷 | DMTA⁃COF | 刮涂 | 1.5 | 1 000.00 (100次循环,0.5 C) | [ |
9 | Celgard | CTFs | 刮涂 | 2.0 | 700.10 (800次循环,1.0 C) | [ |
10 | Celgard 2500 | CTF | 真空过滤 | - | 684.00 (400次循环,1.0 C) | [ |
11 | Celgard 2400 | PyBBT⁃COF | 真空过滤 | 1.0 | 905.00 (100次循环,0.2.0 C) | [ |
12 | Celgard PP/PE/PP | TpPa⁃SO3Li/CNT | 真空过滤 | 1.5 | 482.00 (400次循环,4.0 C) | [ |
13 | Celgard 2325 | SCOF | 刮涂 | 1.0 | 750.00 (120次循环,0.5 C) | [ |
14 | PP 隔膜 | 4F⁃COF | 刮涂 | 0.8~1.0 | 873.10 (100次循环,0.2 C) | [ |
15 | Celgard 2400 | CB⁃COF | 刮涂 | 2.0 | 569.00 (1 000次循环,1.0 C) | [ |
16 | 陶瓷 | CNT@DMTA⁃COF | 刮涂 | 2.0 | 621.00 (500次循环,1.0 A/g) | [ |
17 | Celgard 2500 | Py⁃DPP⁃COF@CNT | 刮涂 | 1.2~2.0 | 584.00(1 000次循环,1.0 C) | [ |
18 | Celgard 2400 | C@COF | 真空过滤 | 1.2~1.5 | 655.70 (500次循环,1 C) | [ |
19 | Celgard | HUT9@CNT | 刮涂 | 1.1 | 750.00 (500次循环,1.0 C) | [ |
20 | Celgard | COF⁃rGO | 真空过滤 | 1.0~1.5 | 1 169.40 (50次循环,0.1 C) | [ |
21 | Celgard | Li⁃CON | 真空过滤 | 1.0~2.0 | 645.00 (600次循环,1.0 C) | [ |
22 | Celgard 2400 | Ti3C2@iCON | 真空过滤 | 1.2 | 706.00 (2 000次循环,2 C) | [ |
23 | Celgard 2500 | TpPa⁃SO3H | 真空过滤 | 1.2 | 494.00 (500次循环,1.0 C) | [ |
24 | Celgard 2400 | PA COF⁃TiO2 | 刮涂 | 1.8 | 371.50 (2 000次循环,1.0 C) | [ |
25 | PP隔膜 | TpTt/CNT | 刮涂 | - | 1 214.00 (0.1 C) | [ |
序号 | 基底 | 修饰材料 | 方法 | 硫载量/(mg•cm-2) | 循环性能/(mA·h·g-1) | 文献 |
---|---|---|---|---|---|---|
1 | 聚乙烯 | COF⁃1⁃CNT | 真空过滤 | 1.1 | 容量保留率84% (300次循环,2.0 C) | [ |
2 | Celgard | TP⁃BPY⁃COF | 刮涂 | 1.0~1.5 | 826.00 (250次循环,1.0 C) | [ |
3 | Celgard 2325 | SCOF⁃2 | 刮涂 | 1.2~2.0 | 497.00 (800次循环,1.0 C) | [ |
4 | PP隔膜 | COF⁃TpPa⁃SO3H@rGO | 刮涂 | 0.9 | 523.00 (1 000次循环,2.0 C) | [ |
5 | Celgard 2400 | TpPa⁃SO3H@PP | 原位界面聚合 | 1.0 | 645.62 (500次循环,1.0 C) | [ |
6 | Celgard 2400 | TAPP⁃ETTB@GO | 真空过滤 | 1.5~2.0 | 920.00 (400次循环,0.2 A/g) | [ |
7 | Celgard 2500 | COF⁃IL/PP/MOF | 刮涂 | 1.0~1.2 | 674.60 (100次循环,0.2 C) | [ |
8 | 陶瓷 | DMTA⁃COF | 刮涂 | 1.5 | 1 000.00 (100次循环,0.5 C) | [ |
9 | Celgard | CTFs | 刮涂 | 2.0 | 700.10 (800次循环,1.0 C) | [ |
10 | Celgard 2500 | CTF | 真空过滤 | - | 684.00 (400次循环,1.0 C) | [ |
11 | Celgard 2400 | PyBBT⁃COF | 真空过滤 | 1.0 | 905.00 (100次循环,0.2.0 C) | [ |
12 | Celgard PP/PE/PP | TpPa⁃SO3Li/CNT | 真空过滤 | 1.5 | 482.00 (400次循环,4.0 C) | [ |
13 | Celgard 2325 | SCOF | 刮涂 | 1.0 | 750.00 (120次循环,0.5 C) | [ |
14 | PP 隔膜 | 4F⁃COF | 刮涂 | 0.8~1.0 | 873.10 (100次循环,0.2 C) | [ |
15 | Celgard 2400 | CB⁃COF | 刮涂 | 2.0 | 569.00 (1 000次循环,1.0 C) | [ |
16 | 陶瓷 | CNT@DMTA⁃COF | 刮涂 | 2.0 | 621.00 (500次循环,1.0 A/g) | [ |
17 | Celgard 2500 | Py⁃DPP⁃COF@CNT | 刮涂 | 1.2~2.0 | 584.00(1 000次循环,1.0 C) | [ |
18 | Celgard 2400 | C@COF | 真空过滤 | 1.2~1.5 | 655.70 (500次循环,1 C) | [ |
19 | Celgard | HUT9@CNT | 刮涂 | 1.1 | 750.00 (500次循环,1.0 C) | [ |
20 | Celgard | COF⁃rGO | 真空过滤 | 1.0~1.5 | 1 169.40 (50次循环,0.1 C) | [ |
21 | Celgard | Li⁃CON | 真空过滤 | 1.0~2.0 | 645.00 (600次循环,1.0 C) | [ |
22 | Celgard 2400 | Ti3C2@iCON | 真空过滤 | 1.2 | 706.00 (2 000次循环,2 C) | [ |
23 | Celgard 2500 | TpPa⁃SO3H | 真空过滤 | 1.2 | 494.00 (500次循环,1.0 C) | [ |
24 | Celgard 2400 | PA COF⁃TiO2 | 刮涂 | 1.8 | 371.50 (2 000次循环,1.0 C) | [ |
25 | PP隔膜 | TpTt/CNT | 刮涂 | - | 1 214.00 (0.1 C) | [ |
1 | Ye C, Chao D, Shan J, et al. Unveiling the advances of 2D materials for Li/Na⁃S batteries experimentally and theoretically[J]. Matter, 2020, 2(2): 323⁃344. |
2 | Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018⁃3032. |
3 | Hong X D, Mei J, Wen L, et al. Nonlithium metal⁃sulfur batteries: Steps toward a leap[J]. Advanced Materials, 2019, 31(5): e1802822. |
4 | Wang J H, Li S, Chen Y, et al. Phthalocyanine based metal⁃organic framework ultrathin nanosheet for efficient photocathode toward light⁃assisted Li⁃CO2 battery[J]. Advanced Functional Materials, 2022, 32(49): 2210259. |
5 | Li S, Wang J H, Dong L Z, et al. Three⁃in⁃one Fe⁃porphyrin based hybrid nanosheets for enhanced CO2 reduction and evolution kinetics in Li⁃CO2 battery[J]. Chinese Chemical Letters, 2023, 6(34): 107633. |
6 | Jiang C, Zhang Y, Zhang M, et al. Exfoliation of covalent organic frameworks into MnO2⁃loaded ultrathin nanosheets as efficient cathode catalysts for Li⁃CO2 batteries[J]. Cell Reports Physical Science, 2021, 2(4): 100392. |
7 | Wang J H, Zhang Y, Liu M, et al. Single⁃metal site⁃embedded conjugated macrocyclic hybrid catalysts enable boosted CO2 reduction and evolution kinetics in Li⁃CO2 batteries[J]. Cell Reports Physical Science, 2021, 2(10): 100583. |
8 | Chung S H, Manthiram A. Current status and future prospects of metal⁃sulfur batteries[J]. Advanced Materials, 2019, 31(27): e1901125. |
9 | Yin Y X, Xin S, Guo Y G, et al. Lithium⁃sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186⁃13200. |
10 | Fang R, Zhao S, Sun Z, et al. More reliable lithium⁃sulfur batteries: Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48):1606823. |
11 | Ji X, Nazar L F. Advances in Li⁃S batteries[J]. Journal of Materials Chemistry, 2010, 20(44): 9821⁃9826. |
12 | Seh Z W, Sun Y, Zhang Q, et al. Designing high⁃energy lithium⁃sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605⁃5634. |
13 | Gao G K, Wang Y R, Wang S B, et al. Stepped channels integrated lithium⁃sulfur separator via photoinduced multidimensional fabrication of metal⁃organic frameworks[J]. Angewandte Chemie International Edition, 2021, 60(18): 10147⁃10154. |
14 | Gao G K, Wang Y R, Zhu H J, et al. Rapid production of metal⁃organic frameworks based separators in industrial⁃level efficiency[J]. Advanced Science, 2020, 7(24): 2002190. |
15 | Guo C, Liu M, Gao G K, et al. Anthraquinone covalent organic framework hollow tubes as binder microadditives in Li⁃S batteries[J]. Angewandte Chemie International Edition, 2022, 61(3): e202113315. |
16 | Yao X, Guo C, Song C, et al. In situ interweaved high sulfur loading Li⁃S cathode by catalytically active metalloporphyrin based organic polymer binders[J]. Advanced Materials, 2023, 35(7): 2208846. |
17 | Deng N, Kang W, Liu Y, et al. A review on separators for lithium⁃sulfur battery: Progress and prospects[J]. Journal of Power Sources, 2016, 331: 132⁃155. |
18 | Luo W, Cheng S, Wu M, et al. A review of advanced separators for rechargeable batteries[J]. Journal of Power Sources, 2021, 509: 230372. |
19 | Fan L, Li M, Li X, et al. Interlayer material selection for lithium⁃sulfur batteries[J]. Joule, 2019, 3(2): 361⁃386. |
20 | Zhang S S. A review on the separators of liquid electrolyte Li⁃ion batteries[J]. Journal of Power Sources, 2007, 164(1): 351⁃364. |
21 | Lee H, Yanilmaz M, Toprakci O, et al. A review of recent developments in membrane separators for rechargeable lithium⁃ion batteries[J]. Energy & Environmental Science, 2014, 7(12): 3857⁃3886. |
22 | Agostini M, Hassoun J. A lithium⁃ion sulfur battery using a polymer, polysulfide⁃added membrane[J]. Scientific Reports, 2015, 5(1): 7591. |
23 | Fenton D E, Parker J M, Wright P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14: 589. |
24 | Costa C M, Silva M M, Lanceros⁃Méndez S. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications[J]. RSC Advances, 2013, 3(29): 11404⁃11417. |
25 | Djian D, Alloin F, Martinet S, et al. Macroporous poly(vinylidene fluoride) membrane as a separator for lithium⁃ion batteries with high charge rate capacity[J]. Journal of Power Sources, 2009, 187(2): 575⁃580. |
26 | Jung B. Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration[J]. Journal of Membrane Science, 2004, 229(1): 129⁃136. |
27 | Croce F, Fiory F S, Persi L, et al. A high⁃rate, long⁃life, lithium nanocomposite polymer electrolyte battery[J]. Electrochemical and Solid⁃State Letters, 2001, 4(8): A121⁃A123. |
28 | Liang Y, Cheng S, Zhao J, et al. Heat treatment of electrospun polyvinylidene fluoride fibrous membrane separators for rechargeable lithium⁃ion batteries[J]. Journal of Power Sources, 2013, 240: 204⁃211. |
29 | Hashimoto A, Yagi K, Mantoku H, Porous film of high molecular weight polyolefin and process for producing same: US6048607A[P]. 2000⁃04⁃11. |
30 | Nagou S, Nakamura S. Microporous film and process for production thereof: US4791144A[P].1988⁃12⁃13. |
31 | Yu T. Trilayer battery separator: US6080507A[P].2000⁃06⁃27. |
32 | He J, Chen Y, Manthiram A. Vertical Co9S8 hollow nanowall arrays grown on a celgard separator as a multifunctional polysulfide barrier for high⁃performance Li⁃S batteries[J]. Energy & Environmental Science, 2018, 11(9): 2560⁃2568. |
33 | Ghazi Z A, He X, Khattak A M, et al. MoS2/celgard separator as efficient polysulfide barrier for long⁃life lithium⁃sulfur batteries[J]. Advanced Materials, 2017, 29(21): 1606817. |
34 | Ren W, Ma W, Zhang S, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Materials, 2019, 23: 707⁃732. |
35 | Ding S Y, Wang W. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548⁃568. |
36 | Chang J N, Li Q, Shi J W, et al. Oxidation⁃reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2[J]. Angewandte Chemie International Edition, 2023, 62(9): e202218868. |
37 | Chang J N, Li Q, Yan Y, et al. Covalent⁃bonding oxidation group and titanium cluster to synthesize a porous crystalline catalyst for selective photo⁃oxidation biomass valorization[J]. Angewandte Chemie International Edition, 2022, 61(37): e202209289. |
38 | Wang Y R, Ding H M, Ma X Y, et al. Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin⁃based covalent organic framework[J]. Angewandte Chemie International Edition, 2022, 61(5): e202114648. |
39 | Wang Y R, Ding H M, Sun S N, et al. Light, heat and electricity integrated energy conversion system: Photothermal⁃assisted Co⁃electrolysis of CO2 and methanol[J]. Angewandte Chemie International Edition, 2022, 61(50): e202212162. |
40 | Wang Z, Zhang S, Chen Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708⁃735. |
41 | Liu X, Huang D, Lai C, et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material[J]. Chemical Society Reviews, 2019, 48(20): 5266⁃5302. |
42 | Scicluna M C, Vella⁃Zarb L. Evolution of nanocarrier drug⁃delivery systems and recent advancements in covalent organic framework⁃drug systems[J]. ACS Applied Nano Materials, 2020, 3(4): 3097⁃3115. |
43 | Geng K, He T, Liu R, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814⁃8933. |
44 | Guo C, Zhou J, Chen Y, et al. Integrated micro space electrostatic field in aqueous Zn⁃ion battery: Scalable electrospray fabrication of porous crystalline anode coating[J]. Angewandte Chemie International Edition, 2023, 62(11): e202300125. |
45 | Guo C, Zhou J, Chen Y, et al. Synergistic manipulation of hydrogen evolution and zinc ion flux in metal⁃covalent organic frameworks for dendrite⁃free Zn⁃based aqueous batteries[J]. Angewandte Chemie International Edition, 2022, 61(41): e202210871. |
46 | Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166⁃11670. |
47 | An Y K, Tan S S, Liu Y, et al. Designs and applications of multi⁃functional covalent organic frameworks in rechargeable batteries[J]. Energy Storage Materials, 2021, 41: 354⁃379. |
48 | Yoo J T, Cho S J, Jung G Y, et al. COF⁃net on CNT⁃net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium⁃sulfur batteries[J]. Nano Letters, 2016, 16(5): 3292⁃3300. |
49 | Xu Q, Zhang K, Qian J, et al. Boosting lithium⁃sulfur battery performance by integrating a redox⁃active covalent organic framework in the separator[J]. ACS Applied Energy Materials, 2019, 2(8): 5793⁃5798. |
50 | Xu J, An S, Song X, et al. Towards high performance Li⁃S batteries via sulfonate⁃rich COF⁃modified separator[J]. Advanced Materials, 2021, 33(49): 2105178. |
51 | Shi J, Su M, Li H, et al. Two⁃dimensional imide⁃based covalent organic frameworks with tailored pore functionality as separators for high⁃performance Li⁃S batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42018⁃42029. |
52 | Zhao J, Yan G, Zhang X, et al. In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high⁃performance Li⁃S batteries[J]. Chemical Engineering Journal, 2022, 442: 136352. |
53 | Sun K, Wang C, Dong Y, et al. Ion⁃selective covalent organic framework membranes as a catalytic polysulfide trap to arrest the redox shuttle effect in lithium⁃sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4079⁃4090. |
54 | Zhang Y, Guo C, Zhou J, et al. Anisotropically hybridized porous crystalline Li⁃S battery separators[J]. Small, 2023, 19(5): e2206616. |
55 | Wang Y, Yang X, Li P, et al. Covalent organic frameworks for separator modification of lithium⁃sulfur batteries[J]. Macromolecular Rapid Communications, 2023,44: 2200760. |
56 | Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li⁃S batteries[J]. Advanced Energy Materials, 2015, 5: 1500408. |
57 | Wang J, Si L, Wei Q, et al. Covalent organic frameworks as the coating layer of ceramic separator for high⁃efficiency lithium⁃sulfur batteries[J]. ACS Applied Nano Materials, 2017, 1(1): 132⁃138. |
58 | Shi Q X, Pei H J, You N, et al. Large⁃scaled covalent triazine framework modified separator as efficient inhibit polysulfide shuttling in Li⁃S batteries[J]. Chemical Engineering Journal, 2019, 375(1): 125977. |
59 | Hu B, Ding B, Xu C, et al. Fabrication of a covalent triazine framework functional interlayer for high⁃performance lithium⁃sulfur batteries[J]. Nanomaterials, 2022, 12(2): 255. |
60 | Wang R, Cai Q, Zhu Y, et al. An n⁃type benzobisthiadiazole⁃based covalent organic framework with narrowed bandgap and enhanced electroactivity[J]. Chemistry of Materials, 2021, 33(10): 3566⁃3574. |
61 | Cao Y, Wu H, Li G, et al. Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium⁃sulfur batteries[J]. Nano Letters, 2021, 21(7): 2997⁃3006. |
62 | Deng X, Li Y, Li L, et al. Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium⁃sulfur batteries[J]. Nanotechnology, 2021, 32(27): 275708. |
63 | Zhang K, Li X, Ma L, et al. Fluorinated covalent organic framework⁃based nanofluidic interface for robust lithium⁃sulfur batteries[J]. ACS Nano, 2023, 17: 2901⁃2911. |
64 | Zhu Y, Yang J, Qiu X, et al. Amphiphilic carborane⁃based covalent organic frameworks as efficient polysulfide nano⁃trappers for lithium⁃sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60373⁃60383. |
65 | Wang J, Qin W, Zhu X, et al. Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium⁃sulfur batteries[J]. Energy, 2020, 199: 117372. |
66 | Xu J, Tang W, Yang C, et al. A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li⁃S chemistry[J]. ACS Energy Letters, 2021, 6(9): 3053⁃3062. |
67 | Yan W, Gao X, Yang J L, et al. Boosting polysulfide catalytic conversion and facilitating Li+ transportation by ion⁃selective COFs composite nanowire for Li⁃S batteries[J]. Small, 2022, 18(11): 2106679. |
68 | Li M, Yan G, Zou P, et al. Dynamic disulfide bonds contained covalent organic framework modified separator as efficient inhibit polysulfide shuttling in Li⁃S batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(41): 13638⁃13649. |
69 | Jiang C, Tang M, Zhu S, et al. Constructing universal ionic sieves via alignment of two⁃dimensional covalent organic frameworks (COFs)[J]. Angewandte Chemie International Edition, 2018, 57(49): 16072⁃16076. |
70 | Cao Y, Liu C, Wang M, et al. Lithiation of covalent organic framework nanosheets facilitating lithium⁃ion transport in lithium⁃sulfur batteries[J]. Energy Storage Materials, 2020, 29: 207⁃215. |
71 | Li P, Lv H, Li Z, et al. The electrostatic attraction and catalytic effect enabled by ionic⁃covalent organic nanosheets on mxene for separator modification of lithium⁃sulfur batteries[J]. Advanced Materials, 2021, 33(17): 2007803. |
72 | Han L, Sun S, Yang Y, et al. An ultrathin double⁃layer covalent organic framework/zwitterionic microporous polymer functional separator for high⁃performance lithium⁃sulfur battery[J]. Applied Surface Science, 2023, 610: 155496. |
73 | Li G H, Yang Y, Cai J C, et al. Lithiophilic aromatic sites and porosity of COFs for a stable lithium metal anode[J]. ACS Applied Energy Materials, 2022, 5(11): 13554⁃13561. |
74 | Li Z, Ji W, Wang T X, et al. Guiding uniformly distributed Li⁃ion flux by lithiophilic covalent organic framework interlayers for high⁃performance lithium metal anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22586⁃22596. |
[1] | Jing LI, Zibo LIN, Fanyu MENG, Shengjing HUANG, Fuyun LI. Effect of Microalgae Bio⁃Oil on the Properties of Rubber/SBS Modified Asphalt [J]. Journal of Liaoning Petrochemical University, 2024, 44(4): 18-24. |
[2] | Yushi Wei, Rui Wang, Zhuang Lin, Heng Jiang, Mingren Huo, Xinyue Chen, Xiaoyan Liang, Chongyang Zhang. Facile Fabrication of Fe3O4⁃Based β⁃Cyclodextrin Polymers and Its Adsorption Performances [J]. Journal of Liaoning Petrochemical University, 2022, 42(6): 28-35. |
[3] | Yongxin Fei, Huiqiang Ma, Shuang Li. Study on Adsorption Performance of Modified Activated Sludge Biochar for Phenol in Water [J]. Journal of Liaoning Petrochemical University, 2022, 42(3): 19-24. |
[4] | Siqi Tong, Weiwei Jian, Qiuyan Hai, Weixin Xie, Yi Sun. Research Progress of Porous Solid Materials for CO2 Adsorption and Removal [J]. Journal of Liaoning Petrochemical University, 2022, 42(2): 30-37. |
[5] | Yonghui Zhang, Xuebing Chen, Jing Zhang. Research Progress on Modification of Bismuth Oxide as Visible Light Photocatalyst [J]. Journal of Liaoning Petrochemical University, 2021, 41(6): 1-8. |
[6] | Luxi Gao, Lü Xuechuan, Hanlin Song, Chi Zhang, Tianhao Wang, Xiaohan Gao. Synthesis and Decolorization Performance of Modified Dicyandiamide⁃Formaldehyde Decolorant [J]. Journal of Liaoning Petrochemical University, 2021, 41(5): 23-27. |
[7] | Cheng Jianqiang, Wang Wenguang, Han Jie. Research Progress on Mechanical Properties of Carbon Fiber Reinforced Cement⁃Based Composites [J]. Journal of Liaoning Petrochemical University, 2021, 41(3): 33-42. |
[8] | Meng Wenyuan, Li Lihua, Wu Xian, Yang Ying, Ma Cheng. Preparation and Characterization of a Novel Hydrophobic Modified Cationic Polyacrylamide [J]. Journal of Liaoning Petrochemical University, 2021, 41(3): 43-47. |
[9] | Liao Kexi1, Peng Hao1, Zeng Zhaoxiong2, He Guoxi1, Miao Chunjiang3, Leng Jihui1. Study on the Causes of Liquid Accumulation in Shale Gas Testing Platform and the Countermeasures [J]. Journal of Liaoning Petrochemical University, 2021, 41(1): 37-44. |
[10] | Zhang Li, Zhao Xuebo. Research Progress in Surface and Interface Control of Silicon⁃Based Anode Materials for Lithium Ion Batteries [J]. Journal of Liaoning Petrochemical University, 2020, 40(4): 49-58. |
[11] | Sun Cai, Gao Ying, Zhang Jing. Recent Advancement of Iron Oxide Photoelectrocatalytic Materials [J]. Journal of Liaoning Petrochemical University, 2020, 40(2): 30-37. |
[12] | Liang Jiling,Wang Liqun,Liu Lijuan,Tian Li,Zhang Lunqiu,Wang Weiqiang. The Modification of Fe3O4@SiO2 by Silane Coupling Agent and Performance [J]. Journal of Liaoning Petrochemical University, 2019, 39(6): 21-26. |
[13] | Chen Luchan,Xiao Yan,Fu Chuanyu,Hu Yuexin,Han Xiangyan. Properties of Indonesian Oil Sand Tailings/Polyethylene Composites [J]. Journal of Liaoning Petrochemical University, 2019, 39(5): 40-44. |
[14] | Lin Meixia,Li Fayun,Wang Yanjie,Xing Yang,Li Jiayu . Photocatalytic Degradation of Organic Pollutants by Modified Graphite Phase Carbonitride [J]. Journal of Liaoning Petrochemical University, 2019, 39(2): 1-09. |
[15] | Wang Qinghua, Liu Yonghui, Zhang Nan, Cao Yinping, Sun Yanhong, Shi Zhihui. Numerical Simulation Study of Two-Stage Series Vortex Gas-Liquid Separator for Electric Submersible Pump [J]. Journal of Liaoning Petrochemical University, 2018, 38(1): 50-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Website Copyright © Editorial Department of Journal of Liaoning Petrochemical University
Address: No. 1, west section of Dandong Road, Wanghua District, Fushun City, Liaoning Province Tel:024-56865105 E-mail:lnxuebao@126.com Zip Code:113001
The system is designed and developed by Beijing magtec Technology Development Co., Ltd.