Journal of Liaoning Petrochemical University ›› 2026, Vol. 46 ›› Issue (1): 81-87.DOI: 10.12422/j.issn.1672-6952.2026.01.010

• Information and Control Engineering • Previous Articles     Next Articles

Improved Ant Colony Algorithm⁃Based Concrete Robot Path Planning

Tao JIANG1(), Sujuan XU2, Xianming LANG2(), Huaidong WANG3, Jiangtao CAO2   

  1. 1.China Railway No. 9 Group Fourth Engineering Co. ,Ltd. ,Shenyang Liaoning 110013,China
    2.School of Information and Control Engineering,Liaoning Petrochemical University,Fushun Liaoning 113001,China
    3.China Railway No. 9 Group Co. ,Ltd. ,Shenyang Liaoning 110013,China
  • Received:2025-08-20 Revised:2025-10-22 Published:2026-02-25 Online:2026-02-05
  • Contact: Xianming LANG

基于改进蚁群算法的混凝土机器人路径规划

姜涛1(), 许素娟2, 郎宪明2(), 王怀东3, 曹江涛2   

  1. 1.中铁九局集团第四工程有限公司,辽宁 沈阳 110013
    2.辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
    3.中铁九局集团有限公司,辽宁 沈阳 110013
  • 通讯作者: 郎宪明
  • 作者简介:姜涛(1973-),男,高级工程师,从事智能机器人路径规划方面的研究;E⁃mail:447608207@qq.com
  • 基金资助:
    国家自然科学基金面上项目(62073158);辽宁省自然科学基金计划面上项目(2023?MS?289);辽宁省教育厅基本科研项目(JYTMS20231441)

Abstract:

To address the challenges of slow convergence, susceptibility to local optima and path redundancy in the path planning of concrete pouring robots in complex construction environments, an improved ant colony algorithm?based path planning optimization method for concrete robots is proposed. First, a new pheromone update mechanism is formulated and the hindsight experience replay (HER) algorithm is applied to define pseudo?target points, thereby addressing the slow convergence and local optimum entrapment issues of conventional ant colony algorithm (ACO). Second, a new obstacle heuristic factor is designed to improve the obstacle avoidance ability of the traditional ant colony algorithm.Third, to solve the limitation of path redundancy in the traditional ant colony algorithm, a curve smoothing function is introduced to eliminate redundant nodes and improve the path quality. Simulation experiments show that the algorithm proposed in this paper has good effectiveness and stability in terms of the shortest path length, the number of turning points and iteration efficiency.

Key words: Concrete robot, Path planning, Ant colony algorithm, Pseudo?target points, Hindsight experience replay

摘要:

针对混凝土机器人在复杂施工环境下路径规划存在收敛速度慢、易陷入局部最优和路径冗余的问题,提出了一种基于改进蚁群算法的混凝土机器人路径规划优化方法。首先,构建新的信息素更新规则,并引入事后经验回放算法设置伪目标点,用于解决传统蚁群算法收敛速度慢和易陷入局部最优的问题;其次,引入了新的障碍物启发因子,以提高传统蚁群算法的避障能力;最后,针对传统蚁群算法路径冗余的问题,引入曲线平滑函数去除冗余节点以提高路径质量。仿真实验结果表明,改进的蚁群算法在最短路径长度、拐点数量和最佳迭代次数方面具有较好的有效性和稳定性。

关键词: 混凝土机器人, 路径规划, 蚁群算法, 伪目标点, 事后经验回放算法

CLC Number: 

Cite this article

Tao JIANG, Sujuan XU, Xianming LANG, Huaidong WANG, Jiangtao CAO. Improved Ant Colony Algorithm⁃Based Concrete Robot Path Planning[J]. Journal of Liaoning Petrochemical University, 2026, 46(1): 81-87.

姜涛, 许素娟, 郎宪明, 王怀东, 曹江涛. 基于改进蚁群算法的混凝土机器人路径规划[J]. 辽宁石油化工大学学报, 2026, 46(1): 81-87.