1 |
董曼曼, 王苑桃, 孙晓, 等. 高效液相色谱⁃串联质谱法快速测定鸡蛋中六种抗生素残留[J]. 当代化工, 2024, 53(5): 1208⁃1212.
|
|
DONG M M, WANG Y T, SUN X, et al. Determination of six kinds of antibiotic residues in eggs by high performance liquid chromatography⁃tandem mass spectrometry[J]. Contemporary Chemical Industry, 2024, 53(5): 1208⁃1212.
|
2 |
陈丽红, 曹莹, 李强, 等. 中国典型抗生素在环境介质中的污染特征与生态风险评价[J]. 环境科学, 2023, 44(12): 6894⁃6908.
|
|
CHEN L H, CAO Y, LI Q, et al. Pollution characteristics and ecological risk assessment of typical antibiotics in environmental media in China[J]. Environmental Science, 2023, 44(12): 6894⁃6908.
|
3 |
GOPAL G, ALEX S A, CHHANDRASEKARAN N, et al. A review on tetracycline removal from aqueous systems by advanced treatment techniques[J]. RSC Advances, 2020, 10(45): 27081⁃27095.
|
4 |
SUKMANA H, BELLAHSEN N, PANTOJA F, et al. Adsorption and coagulation in wastewater treatment——Review[J]. Progress in Agricultural Engineering Sciences, 2021, 17(1): 49⁃68.
|
5 |
LI B, ZHANG Y, XU J, et al. Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions[J]. Chemosphere, 2021, 267: 129283.
|
6 |
ZHANG D W, HE Q Q, HU X L, et al. Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball⁃milled biochar derived from crayfish shell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126254.
|
7 |
孟阳, 魏太庆, 艾丹, 等. 壳聚糖⁃稀土⁃生物炭对水体Cr(Ⅵ)的吸附性能分析[J]. 辽宁石油化工大学学报, 2023, 43(3): 14⁃20.
|
|
MENG Y, WEI T Q, AI D, et al. Adsorption performance of Chitosan⁃Rare Earth⁃Biochar composite for Cr(Ⅵ)in water[J]. Journal of Liaoning Petrochemical University, 2023, 43(3): 14⁃20.
|
8 |
QIU B B, SHAO Q N, SHI J C, et al. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges[J]. Separation and Purification Technology, 2022, 300: 121925.
|
9 |
蒋柱武, 吴梦帆, 李登胜, 等. 层状双金属氢氧化物吸附剂的功能化改性策略[J]. 精细化工, 2023, 40(6): 1239⁃1252.
|
|
JIANG Z W, WU M F, LI D S, et al. Functional modification strategies of layered double⁃metal hydroxide adsorbents[J]. Fine Chemicals, 2023, 40(6): 1239⁃1252.
|
10 |
WANG L W, OK Y S, TSANG D C W, et al. Biochar composites: Emerging trends, field successes and sustainability implications[J]. Soil Use and Management, 2022, 38(1): 14⁃38.
|
11 |
JIA Y, ZHANG Y S, FU J A, et al. A novel magnetic biochar/MgFe⁃layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567: 278⁃287.
|
12 |
ZHENG D Y, WU M, ZHENG E Y, et al. Adsorption and oxidation of ciprofloxacin by a novel layered double hydroxides modified sludge biochar[J]. Journal of Colloid and Interface Science, 2022, 625: 596⁃605.
|
13 |
RAHMAN S, NAVARATHNA C M, KRISHNA DAS N, et al. High capacity aqueous phosphate reclamation using Fe/Mg⁃layered double hydroxide (LDH) dispersed on biochar[J]. Journal of Colloid and Interface Science, 2021, 597: 182⁃195.
|
14 |
LI X Y, GAN T, ZHANG J E, et al. High⁃capacity removal of oxytetracycline hydrochloride from wastewater via Mikania micrantha kunth⁃derived biochar modified by Zn/Fe⁃layered double hydroxide[J]. Bioresource Technology, 2022, 361: 127646.
|
15 |
SU X Y, CHEN Y, LI Y F, et al. Enhanced adsorption of aqueous Pb(Ⅱ) and Cu(Ⅱ) by biochar loaded with layered double hydroxide: Crucial role of mineral precipitation[J]. Journal of Molecular Liquids, 2022, 357: 119083.
|
16 |
PENG Y T, SUN Y Q, HANIF A, et al. Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support[J]. Journal of Cleaner Production, 2021, 289: 125142.
|
17 |
MEILI L, LINS P V, ZANTA C L P S, et al. MgAl⁃LDH/biochar composites for methylene blue removal by adsorption[J]. Applied Clay Science, 2019, 168: 11⁃20.
|
18 |
ALTAF N, LIANG S Y, HUANG L, et al. Electro⁃derived Cu⁃Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction[J]. Journal of Energy Chemistry, 2020, 48: 169⁃180.
|
19 |
KHORSHIDI M, ASADPOUR S, SARMAST N, et al. Enhanced adsorption performance of tetracycline in aqueous solutions using Mg⁃Al⁃LDH/AC nanocomposite[J]. Arabian Journal of Chemistry, 2023, 16(12): 105301.
|
20 |
HOANG L P, NGUYEN T M P, VAN H T, et al. Removal of tetracycline from aqueous solution using composite adsorbent of ZnAl layered double hydroxide and bagasse biochar[J]. Environmental Technology & Innovation, 2022, 28: 102914.
|
21 |
MENG Y, CHEN X, AI D, et al. Sulfur⁃doped zero⁃valent iron supported on biochar for tetracycline adsorption and removal[J]. Journal of Cleaner Production, 2022, 379: 134769.
|
22 |
SEFIDSIAHBANDI M, MORADI O, AKBARI⁃ADERGANI B, et al. The effect of Fe⁃Zn mole ratio (2∶1) bimetallic nanoparticles supported by hydroxyethyl cellulose/graphene oxide for high⁃efficiency removal of doxycycline[J]. Environmental Research, 2023, 218: 114925.
|
23 |
LI J L, ZHANG S H, CHEN Y, et al. A novel three⁃dimensional hierarchical CuAl layered double hydroxide with excellent catalytic activity for degradation of methyl orange[J]. RSC Advances, 2017, 7(46): 29051⁃29057.
|
24 |
WU L H, WAN G P, SHI S H, et al. Atomic layer deposition⁃assisted growth of CuAl LDH on carbon fiber as a peroxidase mimic for colorimetric determination of H2O2 and glucose[J]. New Journal of Chemistry, 2019, 43(15): 5826⁃5832.
|
25 |
QIAO H, WANG X X, LIAO P, et al. Enhanced sequestration of tetracycline by Mn(Ⅱ) encapsulated mesoporous silica nanoparticles: Synergistic sorption and mechanism[J]. Chemosphere, 2021, 284: 131334.
|
26 |
DAI J W, MENG X F, ZHANG Y H, et al. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water[J]. Bioresource Technology, 2020, 311: 123455.
|
27 |
吴国强, 陈广洲. MgAl⁃LDH/CNTs复合材料的制备及其对四环素的吸附研究[J]. 佳木斯大学学报(自然科学版), 2023, 41(1): 150⁃153.
|
|
WU G Q, CHEN G Z. Preparation and adsorption of tetracycline on MgAl⁃LDH/CNTs composites[J]. Journal of Jiamusi University(Natural Science Edition), 2023, 41(1): 150⁃153.
|
28 |
MEI Y L, XU J, ZHANG Y, et al. Effect of Fe⁃N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732.
|
29 |
徐晋, 马一凡, 姚国庆, 等. KOH活化小麦秸秆生物炭对废水中四环素的高效去除[J]. 环境科学, 2022, 43(12): 5635⁃5646.
|
|
XU J, MA Y F, YAO G Q, et al. Effect of KOH activation on the properties of biochar and its adsorption behavior on tetracycline removal from an aqueous solution[J]. Environmental Science, 2022, 43(12): 5635⁃5646.
|
30 |
SUN H W, YANG J J, WANG Y, et al. RETRACTED: Study on the removal efficiency and mechanism of tetracycline in water using biochar and magnetic biochar[J]. Coatings, 2021, 11(11): 1354.
|
31 |
KIM J E, BHATIA S K, SONG H J, et al. Adsorptive removal of tetracycline from aqueous solution by maple leaf⁃derived biochar[J]. Bioresource Technology, 2020, 306: 123092.
|
32 |
LOU J, WEI Y, ZHANG M H, et al. Removal of tetracycline hydrochloride in aqueous by coupling dielectric barrier discharge plasma with biochar[J]. Separation and Purification Technology, 2021, 266: 118515.
|
33 |
YANG H C, YU H, WANG J H, et al. Magnetic porous biochar as a renewable and highly effective adsorbent for the removal of tetracycline hydrochloride in water[J]. Environmental Science and Pollution Research, 2021, 28(43): 61513⁃61525.
|
34 |
CHEN W S, ZHAO B L, GUO Y P, et al. Effect of hydrothermal pretreatment on pyrolyzed sludge biochars for tetracycline adsorption[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106557.
|
35 |
NGUYEN T B, NGUYEN T K T, CHEN W H, et al. Hydrothermal and pyrolytic conversion of sunflower seed husk into novel porous biochar for efficient adsorption of tetracycline[J]. Bioresource Technology, 2023, 373: 128711.
|