1 |
Gant T G, Meyers A I. The chemistry of 2⁃oxazolines (1985⁃present)[J]. Tetrahedron, 1994, 50(8): 2297⁃2360.
|
2 |
Wiley R H, Bennett L L. The chemistry of the oxazolines[J]. Chemical Reviews, 1949, 44(3): 447⁃476.
|
3 |
Reuman M, Meyers A I. The synthetic utility of oxazolines in aromatic substitution[J]. Tetrahedron, 1985, 41(5): 837⁃860.
|
4 |
Meyers A I, Mihelich E D. The synthetic utility of 2⁃oxazolines[J]. Angewandte Chemie International Edition, 1976, 15(5): 270⁃281.
|
5 |
Hoshino S, Ozeki M, Awakawa T, et al. Catenulobactins A and B, heterocyclic peptides from culturing catenuloplanes sp. with a mycolic acid⁃containing bacterium[J]. Journal of Natural Products, 2018, 81(9): 2106⁃2110.
|
6 |
Nelson K M, Salomon C E, Aldrich C C. Total synthesis and biological evaluation of transvalencin Z[J]. Journal of Natural Products, 2012, 75(6): 1037⁃1043.
|
7 |
Guariento S, Tonelli M, Espinoza S, et al. Rational design, chemical synthesis and biological evaluation of novel biguanides exploring species⁃specificity responsiveness of TAAR1 agonists[J]. European Journal of Medicinal Chemistry, 2018, 146: 171⁃184.
|
8 |
Marson C M, Matthews C J, Atkinson S J, et al. Potent and selective inhibitors of histone deacetylase⁃3 containing chiral oxazoline capping groups and a N⁃(2⁃aminophenyl)⁃benzamide binding unit[J]. Journal of Medicinal Chemistry, 2015, 58(17): 6803⁃6818.
|
9 |
Yu X, Liu Y, Li Y, et al. Design, synthesis, acaricidal/insecticidal activity, and structure⁃activity relationship studies of novel oxazolines containing sulfone/sulfoxide groups based on the sulfonylurea receptor protein⁃binding site[J]. Journal of Agricultural and Food Chemistry, 2016, 64(15): 3034⁃3040.
|
10 |
Li Y, Li C, Zheng Y, et al. Design, synthesis, acaricidal activity, and mechanism of oxazoline derivatives containing an oxime ether moiety[J]. Journal of Agricultural and Food Chemistry, 2014, 62(14): 3064⁃3072.
|
11 |
Degnan B M, Hawkins C J, Lavin M F, et al. New cyclic peptides with cytotoxic activity from the ascidian Lissoclinum patella[J]. Journal of Medicinal Chemistry, 1989, 32(6): 1349⁃1354.
|
12 |
Wasylyk J M, Biskupiak J E, Costello C E, et al. Cyclic peptide structures from the tunicate Lissoclinum patella by FAB mass spectrometry[J]. The Journal of Organic Chemistry, 1983, 48(24): 4445⁃4449.
|
13 |
Prinsep M R, Moore R E, Levine I A, et al. Westiellamide, a bistratamide⁃related cyclic peptide from the blue⁃green alga westiellopsis prolifica[J]. Journal of Natural Products, 1992, 55: 140⁃142.
|
14 |
Wipf P, Wang C. Synthesis and Ag(I) complexation studies of tethered westiellamide[J]. Organic Letters, 2006, 8(11): 2381⁃2384.
|
15 |
Tsuda M, Yamakawa M, Oka S, et al. Brasilibactin A, a cytotoxic compound from actinomycete nocardia brasiliensis[J]. Journal of Natural Products, 2005, 68(3): 462⁃464.
|
16 |
Meyers A I, Knaus G, Kamata K. Synthesis via 2⁃oxazolines. IV. Asymmetric synthesis of 2⁃methylalkanoic acids from a chiral oxazoline[J]. Journal of the American Chemical Society, 1974, 96(1): 268⁃270.
|
17 |
Desimoni G, Faita G, Jørgensen K A. C2⁃symmetric chiral bis(oxazoline) ligands in asymmetric catalysis[J]. Chemical Reviews, 2006, 106(9): 3561⁃3651.
|
18 |
Desimoni G, Faita G, Jørgensen K A. Update 1 of: C2⁃symmetric chiral bis(oxazoline) ligands in asymmetric catalysis[J]. Chemical Reviews, 2011, 111(11): 284⁃437.
|
19 |
O'Reilly S, Guiry P J. Recent applications of C1⁃symmetric bis(oxazoline)⁃containing ligands in asymmetric catalysis[J]. Synthesis, 2014, 46(6): 722⁃739.
|
20 |
Mantilli L, Gérard D, Torche S, et al. Iridium⁃catalyzed asymmetric isomerization of primary allylic alcohols[J]. Angewandte Chemie International Edition, 2009, 48(28): 5143⁃5147.
|
21 |
Yang G, Zhang W. Renaissance of pyridine⁃oxazolines as chiral ligands for asymmetric catalysis[J]. Chemical Society Reviews, 2018, 47(5): 1783⁃1810.
|
22 |
Li W, Wang G, Lai J, et al. Multifunctional isoquinoline⁃oxazoline ligands of chemical and biological importance[J]. Chemical Communications, 2019, 55(42): 5902⁃5905.
|
23 |
Shao Q, Wu Q F, He J, et al. Enantioselective γ⁃C(sp3)⁃ H activation of alkyl amines via Pd(II)/Pd(0) catalysis[J]. Journal of the American Chemical Society, 2018, 140(16): 5322⁃5325.
|
24 |
Von Matt P, Pfaltz A. Chiral phosphinoaryldihydrooxazoles as ligands in asymmetric catalysis: Pd⁃catalyzed allylic substitution[J]. Angewandte Chemie International Edition in English, 1993, 32(4): 566⁃568.
|
25 |
Ito Y, Sawamura M, Hayashi T. Catalytic asymmetric aldol reaction: Reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine⁃gold(I) complex[J]. Journal of the American Chemical Society, 1986, 108: 6406⁃6407.
|
26 |
Pastor S D, Togni A. Asymmetric synthesis with chiral ferrocenylamine ligands: The importance of central chirality[J]. Journal of the American Chemical Society, 1989, 111(6): 2333⁃2334.
|
27 |
Kim H Y, Oh K. Highly diastereo⁃ and enantioselective aldol reaction of methyl α⁃isocyanoacetate: A cooperative catalysis approach[J]. Organic Letters, 2011, 13(6): 1306⁃1309.
|
28 |
Sladojevich F, Trabocchi A, Guarna A, et al. A new family of cinchona⁃derived amino phosphine precatalysts: Application to the highly enantio⁃ and diastereoselective silver⁃catalyzed isocyanoacetate aldol reaction[J]. Journal of the American Chemical Society, 2011, 133(6): 1710⁃1713.
|
29 |
de la Campa R, Ortin I, Dixon D J. Direct catalytic enantio⁃ and diastereoselective ketone aldol reactions of isocyanoacetates[J]. Angewandte Chemie International Edition, 2015, 54(16): 4895⁃4898.
|
30 |
Martínez⁃Pardo P, Blay G, Muñoz M C, et al. Enantioselective synthesis of chiral oxazolines from unactivated ketones and isocyanoacetate esters by synergistic silver/organocatalysis[J]. Chemical Communications, 2018, 54(23): 2862⁃2865.
|
31 |
Martínez⁃Pardo P, Blay G, Vila C, et al. Enantioselective synthesis of 5⁃trifluoromethyl⁃2⁃oxazolines under dual silver/organocatalysis[J]. The Journal of Organic Chemistry, 2019, 84(1): 314⁃325.
|
32 |
de la Campa R, Manzano R, Calleja P, et al. Enantioselective silver⁃catalyzed cascade synthesis of fused lactone and lactam oxazolines[J]. Organic Letters, 2018, 20(19): 6033⁃6036.
|
33 |
Xue M X, Guo C, Gong L Z. Asymmetric synthesis of chiral oxazolines by organocatalytic cyclization of α⁃aryl isocyanoesters with aldehydes[J]. Synlett, 2009, 2009(13): 2191⁃2197.
|
34 |
Jiang X, Cao Y, Wang Y, et al. A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole⁃type phytoalexin analogue[J]. Journal of the American Chemical Society, 2010, 132(43): 15328⁃15333.
|
35 |
Chen W B, Wu Z J, Hu J, et al. Organocatalytic direct asymmetric aldol reactions of 3⁃isothiocyanato oxindoles to ketones: stereocontrolled synthesis of spirooxindoles bearing highly congested contiguous tetrasubstituted stereocenters[J]. Organic Letters, 2011, 13(9): 2472⁃2475.
|
36 |
Zhao M X, Zhou H, Tang W H, et al. Cinchona alkaloid⁃derived thiourea⁃catalyzed diastereo⁃ and enantioselective [3+2] cycloaddition reaction of isocyanoacetates to isatins: A facile access to optically active spirooxindole oxazolines[J]. Advanced Synthesis & Catalysis, 2013, 355(7): 1277⁃1283.
|
37 |
Lu Y, Wang M, Zhao X, et al. Cooperative chiral guanidine/AgPF6 catalyzed asymmetric isocyanoacetate aldol reaction with isatins[J]. Synlett, 2015, 26(11): 1545⁃1548.
|
38 |
Diao R C, Zhao W T, Li S. Diastereo⁃ and enantioselective preparation of oxazolines via the base⁃catalysed aldol reaction of isocyanoacetates with aldehydes using cinchona alkaloids[J]. Journal of Chemical Research, 2016, 40(9): 521⁃525.
|
39 |
Evans D A, Janey J M, Magomedov N, et al. Chiral salen⁃aluminum complexes as catalysts for enantioselective aldol reactions of aldehydes and 5⁃alkoxyoxazoles: An efficient approach to the asymmetric synthesis of syn and anti β⁃hydroxy⁃α⁃amino acid derivatives[J]. Angewandte Chemie International Edition, 2001, 40(10): 1884⁃1888.
|
40 |
Rauniyar V, Lackner A D, Hamilton G L, et al. Asymmetric electrophilic fluorination using an anionic chiral phase⁃transfer catalyst[J]. Science, 2011, 334: 1681⁃1684.
|
41 |
Jaganathan A, Garzan A, Whitehead D C, et al. A catalytic asymmetric chlorocyclization of unsaturated amides[J]. Angewandte Chemie International Edition, 2011, 50(11): 2593⁃2596.
|
42 |
Jaganathan A, Borhan B. Chlorosulfonamide salts are superior electrophilic chlorine precursors for the organocatalytic asymmetric chlorocyclization of unsaturated amides[J]. Organic Letters, 2014, 16(14): 3616⁃3619.
|
43 |
Marzijarani N S, Yousefi R, Jaganathan A, et al. Absolute and relative facial selectivities in organocatalytic asymmetric chlorocyclization reactions[J]. Chemical Science, 2018, 9(11): 2898⁃2908.
|
44 |
Tsuda Y, Kuriyama M, Onomura O. Synthesis of optically active oxazoline derivatives via catalytic asymmetric desymmetrization of 1,3⁃diols[J]. Chemistry⁃A European Journal, 2012, 18(9): 2481⁃2483.
|
45 |
Yamamoto K, Tsuda Y, Kuriyama M, et al. Copper⁃catalyzed enantioselective synthesis of oxazolines from aminotriols via asymmetric desymmetrization[J]. Chemistry⁃An Asian Journal, 2020, 15(6): 1⁃6.
|
46 |
Kawato Y, Kubota A, Ono H, et al. Enantioselective bromocyclization of allylic amides catalyzed by BINAP derivatives[J]. Organic Letters, 2015, 17(5): 1244⁃1247.
|
47 |
Kawato Y, Ono H, Kubota A, et al. Highly enantioselective bromocyclization of allylic amides with a P/P=O double⁃site lewis base catalyst[J]. Chemistry⁃A European Journal, 2016, 22(6): 2127⁃2133.
|
48 |
Nagao Y, Hisanaga T, Egami H, et al. Desymmetrization of bisallylic amides through catalytic enantioselective bromocyclization with BINAP monoxide[J]. Chemistry⁃A European Journal, 2017, 23(66): 16758⁃16762.
|
49 |
Kawato Y, Hamashima Y. Enantioselective bromocyclization of allylic amides mediated by phosphorus catalysis[J]. Synlett, 2018, 29(10): 1257⁃1271.
|
50 |
Nagao Y, Hisanaga T, Utsumi T, et al. Enantioselective synthesis of nelfinavir via asymmetric bromocyclization of bisallylic amide[J]. The Journal of Organic Chemistry, 2018, 83(13): 7290⁃7295.
|
51 |
Luo H, Yang Z, Lin W, et al. A catalytic highly enantioselective allene approach to oxazolines[J]. Chemical Science, 2018, 9(7): 1964⁃1969.
|
52 |
Qin T, Jiang Q, Ji J, et al. Chiral selenide⁃catalyzed enantioselective synthesis of trifluoromethylthiolated 2,5⁃disubstituted oxazolines[J]. Organic & Biomolecular Chemistry, 2019, 17(7): 1763⁃1766.
|
53 |
Jew S S, Lee Y J, Lee J, et al. Highly enantioselective phase⁃transfer⁃catalytic alkylation of 2⁃phenyl⁃2⁃oxazoline⁃4⁃carboxylic acid tert⁃butyl ester for the asymmetric synthesis of alpha⁃alkyl serines[J]. Angewandte Chemie International Edition, 2004, 43(18): 2382⁃2385.
|
54 |
Lee Y J, Lee J, Kim M J, et al. Highly enantioselective synthesis of (R)⁃α⁃alkylserines via phase⁃transfer catalytic alkylation of o⁃biphenyl⁃2⁃oxazoline⁃4⁃carboxylic acid tert⁃butyl ester using cinchona⁃derived catalysts[J]. Organic Letters, 2005, 7(8): 1557⁃1560.
|
55 |
Lee Y J, Lee J, Kim M J, et al. Highly enantioselective synthesis of (2S)⁃α⁃(hydroxymethyl)⁃glutamic acid by the catalytic michael addition of 2⁃naphthalen⁃1⁃yl⁃2⁃oxazoline⁃4⁃carboxylic acid tert⁃butyl ester[J]. Organic Letters, 2005, 7(15): 3207⁃3209.
|
56 |
Kuwano R, Kameyama N, Ikeda R. Catalytic asymmetric hydrogenation of N⁃boc⁃imidazoles and oxazoles[J]. Journal of the American Chemical Society, 2011, 133(19): 7312⁃7315.
|
57 |
Punk M, Merkley C, Kennedy K, et al. Palladium⁃catalyzed, enantioselective heine reaction[J]. ACS Catalysis, 2016, 6(7): 4694⁃4698.
|