1 |
戴宝华, 王德亮, 曹勇, 等. 2022年中国能源行业回顾及2023年展望[J]. 当代石油石化, 2023, 31(1): 2⁃9.
|
|
DAI B H, WANG D L, CAO Y, et al. China's energy industry: 2022 review and 2023 prospect[J]. Petroleum & Petrochemical Today, 2023, 31(1): 2⁃9.
|
2 |
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56⁃58.
|
3 |
SALEH T A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4[J]. Applied Surface Science, 2011, 257(17): 7746⁃7751.
|
4 |
LEHMAN J H, TERRONES M, MANSFIELD E, et al. Evaluating the characteristics of multiwall carbon nanotubes[J]. Carbon, 2011, 49(8): 2581⁃2602.
|
5 |
FERNÁNDEZ⁃CATALÁ J, NAVLANI⁃GARCÍA M, VERMA P, et al. Photocatalytically⁃driven H2 production over Cu/TiO2 catalysts decorated with multi⁃walled carbon nanotubes[J]. Catalysis Today, 2021, 364: 182⁃189.
|
6 |
TOLOMAN D, POPA A, STAN M, et al. Visible⁃light⁃driven photocatalytic degradation of different organic pollutants using Cu doped ZnO⁃MWCNT nanocomposites[J]. Journal of Alloys and Compounds, 2021, 866: 159010.
|
7 |
DHODAMANI A G,MORE K V, PATIL S M,et al. Synergistics of Cr(Ⅲ) doping in TiO2/MWCNTs nanocomposites: Their enhanced physicochemical properties in relation to photovoltaic studies[J]. Solar Energy, 2020, 201: 398⁃408.
|
8 |
VATANDOUST L,HABIBI A,NAGHSHARA H,et al.Fabrication of ZnO⁃MWCNT nanocomposite sensor and investigation of its ammonia gas sensing properties at room temperature[J]. Synthetic Metals, 2021, 273: 116710.
|
9 |
王雪,建伟伟,陆毅,等.Cu和Sn改性多壁碳纳米管对VOCs气体的吸附[J].辽宁石油化工大学学报,2021,41(5): 44⁃49.
|
|
WANG X, JIAN W W, LU Y, et al. Adsorption of VOCs using MWCNTs modified with Cu and Sn[J]. Journal of Liaoning Petrochemical University, 2021, 41(5): 44⁃49.
|
10 |
汤佳玉, 孔鹏飞, 鞠佳, 等. 不同结构碳纳米管吸附胆红素的研究[J]. 辽宁石油化工大学学报, 2021, 41(5): 38⁃43.
|
|
TANG J Y, KONG P F, JU J, et al. Adsorption of bilirubin by carbon nanotubes with different structures[J]. Journal of Liaoning Petrochemical University, 2021, 41(5): 38⁃43.
|
11 |
DARAEE M, BANIADAM M, RASHIDI A, et al. Doping transition metals into TiO2⁃CNT nanocatalyst to enhance the selective oxidation of H2S[J]. ChemistrySelect, 2020, 5(36): 11242⁃11256.
|
12 |
RODRÍGUEZ V, CAMARILLO R, MARTÍNEZ F, et al. CO2 photocatalytic reduction with CNT/TiO2 based nanocomposites prepared by high⁃pressure technology[J]. The Journal of Supercritical Fluids, 2020, 163: 104876.
|
13 |
ZHANG Y, WIBOWO H, ZHONG L, et al. Cu⁃BTC⁃based composite adsorbents for selective adsorption of CO2 from syngas[J]. Separation and Purification Technology, 2021, 279: 119644.
|
14 |
RAJA S, ALPHIN M S, SIVACHANDIRAN L, et al. TiO2⁃carbon nanotubes composite supported MnOx⁃CuO catalyst for low⁃temperature NH3⁃SCR of NO: Investigation of SO2 and H2O tolerance[J]. Fuel, 2022, 307: 121886.
|
15 |
BAO J J, DAI Y, LIU H, et al. Photocatalytic removal of SO2 over Mn doped titanium dioxide supported by multi⁃walled carbon nanotubes[J]. International Journal of Hydrogen Energy, 2016, 41(35): 15688⁃15695.
|
16 |
YANG Y C, JIA F R, JIAN W W, et al. Influence of Cr3+ concentration on SO2 removal over TiO2 based multi⁃walled carbon nanotubes[J]. China Petroleum Processing & Petrochemical Technology, 2019, 21(1): 23⁃35.
|
17 |
RAJA S, ALPHIN M S. Systematic effects of Fe doping on the activity of V2O5/TiO2⁃carbon nanotube catalyst for NH3⁃SCR of NOx[J]. Journal of Nanoparticle Research, 2020, 22(7): 190.
|
18 |
SUN Y, JIAN W W, TONG S Q, et al. Study on photocatalytic desulfurization and denitrification performance of Cu⁃and Cr⁃modified MWCNT[J]. Processes, 2021, 9(10): 1823.
|
19 |
EVERHART B M, MCAULEY B, AL MAYYAHI A, et al. Photocatalytic NOx mitigation under relevant conditions using carbon nanotube⁃modified titania[J]. Chemical Engineering Journal, 2022, 446(Part 1): 136984.
|
20 |
DARVISH S M, ALI A M, SANI S R. Designed air purifier reactor for photocatalytic degradation of CO2 and NO2 gases using MWCNT/TiO2 thin films under visible light irradiation[J]. Materials Chemistry and Physics, 2020, 248: 122872.
|
21 |
SEZER N, KOÇ M. Oxidative acid treatment of carbon nanotubes[J]. Surfaces and Interfaces, 2019, 14: 1⁃8.
|
22 |
杨彦春. 工业烟气干法脱硫关键技术基础研究[D]. 抚顺: 辽宁石油化工大学, 2019.
|
23 |
WANG Z Y, GUO R T, SHI X, et al. The enhanced performance of Sb⁃modified Cu/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Applied Surface Science, 2019, 475: 334⁃341.
|
24 |
LIANG H Y, LIN J H, JIA H N, et al. Hierarchical NiCo⁃LDH@NiOOH core⁃shell heterostructure on carbon fiber cloth as battery⁃like electrode for supercapacitor[J]. Journal of Power Sources, 2018, 378: 248⁃254.
|
25 |
TUDU B, NALAJALA N, SAIKIA P, et al. Cu–Ni bimetal integrated TiO2 thin film for enhanced solar hydrogen generation[J]. Solar RRL, 2020, 4(5): 1900557.
|
26 |
CHEN Z, YIN H B, WANG C Z, et al. New insights on competitive adsorption of NO/SO2 on TiO2 anatase for photocatalytic NO oxidation[J]. Environmental Science & Technology, 2021, 55(13): 9285⁃9292.
|
27 |
HENDERSON M A. A surface science perspective on TiO2 photocatalysis[J]. Surface Science Reports, 2011, 66(6⁃7): 185⁃297.
|
28 |
ZHAO Y, ZHAO L, HAN J, et al. Study on method and mechanism for simultaneous desulfurization and denitrification of flue gas based on the TiO2 photocatalysis[J]. Science in China Series E: Technological Sciences, 2008, 51(3): 268⁃276.
|
29 |
MA Q X, WANG L, CHU B W, et al. Contrary role of H2O and O2 in the kinetics of heterogeneous photochemical reactions of SO2 on TiO2[J]. The Journal of Physical Chemistry A, 2019, 123(7): 1311⁃1318.
|
30 |
WANG F M, SHEN B X, ZHU S W, et al. Promotion of Fe and Co doped Mn⁃Ce/TiO2 catalysts for low temperature NH3⁃SCR with SO2 tolerance[J]. Fuel, 2019, 249: 54⁃60.
|