辽宁石油化工大学学报 ›› 2023, Vol. 43 ›› Issue (1): 80-88.DOI: 10.12422/j.issn.1672-6952.2023.01.014

• 信息与控制工程 • 上一篇    下一篇

基于ISSA的多变量ORVFL网络自适应预测控制

那新宇(), 余华鹏, 金鑫(), 王越   

  1. 辽宁石油化工大学 信息与控制工程学院,辽宁 抚顺 113001
  • 收稿日期:2021-07-24 修回日期:2021-09-19 出版日期:2023-02-25 发布日期:2023-03-13
  • 通讯作者: 金鑫
  • 作者简介:那新宇(1989⁃),男,硕士研究生,从事工业过程先进控制研究;E⁃mail:540633884@qq.com
  • 基金资助:
    国家自然科学基金面上项目(62073158)

Multivariable ORVFL Network Adaptive Predictive Control Based on ISSA

Xinyu Na(), Huapeng Yu, Xin Jin(), Yue Wang   

  1. School of Information and Control Engineering,Liaoning Petrochemical University,Fushun Liaoning 113001,China
  • Received:2021-07-24 Revised:2021-09-19 Published:2023-02-25 Online:2023-03-13
  • Contact: Xin Jin

摘要:

针对多输入多输出(Multiple?Input Multiple?Output, MIMO)的非线性系统,提出了一种基于改进的麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)的在线序列随机权值网络( Online Random Vector Functional?Link Net, ORVFL)自适应预测控制算法(ISSA?MPC)。该算法采用ORVFL网络逼近非线性系统模型,并用于系统过程的多步预测。为了提高麻雀搜索算法的性能,使用该算法对系统性能指标进行了在线优化,求解了每一个采样周期的最优控制律。结果表明,该算法控制性能良好并具有较好的抗模型失配能力。

关键词: 模型预测控制, 麻雀搜索算法, 非线性系统, 神经网络

Abstract:

For the MIMO nonlinear systems, a multivariable ORVFL neural network adaptive predictive control algorithm based on Improved Sparrow Search Algorithm was proposed in this paper. The algorithm uses the ORVFL network to approximate the nonlinear system model, and applies to the multi?step prediction of the system process. In order to improve the performance of the Sparrow Search Algorithm, the algorithm is used to optimize the system performance index online and solve the optimal control law of each sampling period. The results show that the algorithm has good control performance and good anti?model mismatch ability.

Key words: Model predictive control, Sparrow search algorithm, Nonlinear system, Neural networks

中图分类号: 

引用本文

那新宇, 余华鹏, 金鑫, 王越. 基于ISSA的多变量ORVFL网络自适应预测控制[J]. 辽宁石油化工大学学报, 2023, 43(1): 80-88.

Xinyu Na, Huapeng Yu, Xin Jin, Yue Wang. Multivariable ORVFL Network Adaptive Predictive Control Based on ISSA[J]. Journal of Liaoning Petrochemical University, 2023, 43(1): 80-88.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.12422/j.issn.1672-6952.2023.01.014

               https://journal.lnpu.edu.cn/CN/Y2023/V43/I1/80