1 |
Akpan U G, Hameed B H. Parameters affecting the photocatalytic degradation of dyes using TiO2⁃based photocatalysts: A review[J]. Journal of Hazardous Materials, 2009, 170(2⁃3): 520⁃529.
|
2 |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37⁃38.
|
3 |
王俊珍,付希贤,白树林,等.钙钛矿型复合氧化物LaFeO3和SrFeO3的催化性能[J].工业水处理,2000,20(12):15⁃16.
|
4 |
张伟,俞龙.Bi2WO6光催化剂的制备及在废水处理中的研究现状[J].湖南城市学院学报(自然科学版),2020,29(2):68⁃72.
|
5 |
马敏敏,仝攀瑞,高占尧,等.钼酸铋基光催化材料的研究进展[J].人工晶体学报,2019,48(1):131⁃136.
|
6 |
王燕琴,瞿梦,冯红武,等.卤氧化铋光催化剂的研究进展[J].化工进展,2014,33(3):660⁃667.
|
7 |
卢信宇,李玥,范文杰,等.卤氧化铋光催化剂的改性研究进展[J].当代化工研究,2020(13):1⁃3.
|
8 |
王晓雯,张小超,樊彩梅.BiOCl基光催化材料的研究进展[J].化工进展,2014,33(1):124⁃132.
|
9 |
Xiao X, Hu R P, Liu C, et al. Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride[J]. Chemical Engineering Journal, 2013, 225: 790⁃797.
|
10 |
Sun S M, Wang W Z, Zhang L, et al. Visible light⁃induced efficient contaminant removal by Bi5O7I[J]. Environmental Science & Technology, 2009, 43(6): 2005⁃2010.
|
11 |
Di J, Xia J X, Ji M X, et al. Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight[J]. Journal of Materials Chemistry A, 2015, 3(29): 15108⁃15118.
|
12 |
Wang C Y, Zhang X, Qiu H B, et al. Photocatalytic degradation of bisphenol A by oxygen⁃rich and highly visible⁃light responsive Bi12O17Cl2 nanobelts[J]. Applied Catalysis B: Environmental, 2017, 200: 659⁃665.
|
13 |
Xiong J, Song P, Di J, et al. Bismuth⁃rich bismuth oxyhalides: A new opportunity to trigger high⁃efficiency photocatalysis[J]. Journal of Materials Chemistry A, 2020, 8: 21434⁃21454.
|
14 |
Long Z Q, Xian G, Zhang G M, et al. BiOCl⁃Bi12O17Cl2 nanocomposite with high visible⁃light photocatalytic activity prepared by an ultrasonic hydrothermal method for removing dye and pharmaceutical[J]. Chinese Journal of Catalysis, 2020, 41: 464⁃473.
|
15 |
Xu Y G, Ma Y, Ji X Y, et al, Conjugated conducting polymers PANI decorated Bi12O17Cl2 photocatalyst with extended light response range and enhanced photoactivity[J]. Applied Surface Science, 2019,464: 552⁃561.
|
16 |
穆晓斐,葛建华,郭学涛,等.Bi12O17Cl2光催化降解RhB——响应曲面法优化反应条件[J].广州化工,2016,44(24):74⁃77.
|
17 |
Guo M N, He H, Cao J, et al. Novel I⁃doped Bi12O17Cl2 photocatalysts with enhanced photocatalytic activity for contaminants removal[J]. Materials Research Bulletin, 2019, 112: 205⁃212.
|
18 |
Tien L C, Lin Y L, Chen S Y. Synthesis and characterization of Bi12O17Cl2 nanowires obtained by chlorination of α⁃Bi2O3 nanowires[J]. Materials Letters, 2013, 113: 30⁃33.
|
19 |
He G P, Xing C L, Xin X, et al. Facile synthesis of flower⁃like Bi12O17Cl2/β⁃Bi2O3 composites with enhanced visible light photocatalytic performance for the degradation of 4⁃tert⁃butylphenol[J]. Applied Catalysis B: Environmental, 2015, 170: 1⁃9.
|
20 |
Kočí K, Zatloukalová K, Obalová L, et al. Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst[J]. Chinese Journal of Catalysis, 2011, 32(5): 812⁃815.
|
21 |
Bi C J, Cao J, Lina H L, et al. Enhanced photocatalytic activity of Bi12O17Cl2 through loading Pt quantum dots as a highly efficient electron capturer[J]. Applied Catalysis B: Environmental, 2016, 195: 132⁃140.
|
22 |
Huang H W, Xiao K, He Y, et al. In situ assembly of BiOI@Bi12O17Cl2 p⁃n junction: Charge induced unique front⁃lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis[J]. Applied Catalysis B: Environmental, 2016, 199: 75⁃86.
|
23 |
Frackowiak E. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics, 2007, 9(15): 1774⁃1785.
|
24 |
Su D S, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts[J]. Chemical Reviews, 2013, 113(8): 5782⁃5816.
|
25 |
Wang Y X, Ao Z M, Sun H Q, et al. Activation of peroxymonosulfate by carbonaceous oxygen groups: Experimental and density functional theory calculations[J]. Applied Catalysis B: Environmental, 2016, 198: 295⁃302.
|
26 |
Ma J Y, Shi L, Wang Z M, et al. 2D layered MoS2 loaded on Bi12O17Cl2 nanosheets: An effective visible⁃light photocatalyst[J]. Ceramics International, 2020, 46(6): 7438⁃7445.
|
27 |
Fang K X, Shi L, Yao L Z, et al. Synthesis of novel magnetically separable Fe3O4/Bi12O17Cl2 photocatalyst with boosted visible⁃light photocatalytic activity[J]. Materials Research Bulletin, 2020, 129: 110888.
|
28 |
Shi L, Liang L, Ma J Y, et al. Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/g⁃C3N4 composite photocatalysts under visible light[J]. Dalton Transactions, 2014, 43(19): 7236⁃7244.
|
29 |
Wang D S, Shi L, Luo Q Z, et al. An efficient visible light photocatalyst prepared from TiO2 and polyvinyl chloride[J]. Journal of Materials Science, 2012, 47(5): 2136⁃2145.
|
30 |
Hu C, Peng T W, Hu X X, et al. Plasmon⁃induced photodegradation of toxic pollutants with Ag⁃AgI/Al2O3 under visible⁃light irradiation[J]. Journal of the American Chemical Society, 2010, 132(2): 857⁃862.
|
31 |
Upreti A R, Li Y, Khadgi N, et al. Efficient visible light photocatalytic degradation of 17α⁃ethinyl estradiol by a multifunctional Ag⁃AgCl/ZnFe2O4 magnetic nanocomposite[J]. RSC Advances, 2016, 6(39): 32761⁃32769.
|
32 |
Kumar S, Surendar T, Baruah A, et al. Synthesis of a novel and stable g⁃C3N4⁃Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation[J]. Journal of Materials Chemistry A, 2013, 1: 5333⁃5340.
|