辽宁石油化工大学学报 ›› 2013, Vol. 33 ›› Issue (3): 67-69.

• 化工机械 • 上一篇    下一篇

汽轮机转子故障诊断算法应用研究

刘暋达,翟春艳,李书臣* ,苏成利   

  1. 辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001
  • 收稿日期:2013-01-02 出版日期:2013-09-25 发布日期:2017-07-14
  • 作者简介:刘达(1984-),男,辽宁沈阳市,在读硕士
  • 基金资助:
    辽宁省科技攻关项目(2011216011

Application of Algorithm for Turbine Rotor Fault Diagnosis

LIU Da, ZHAI Chunyan, LI Shuchen*, SU Chengli   

  1. College of Information and Control Engineering, Liaoning Shihua University, Fushun Liaoning 113001, China
  • Received:2013-01-02 Published:2013-09-25 Online:2017-07-14

摘要: 对汽轮机转子故障进行诊断是确保汽轮机安全运行的关键。振动信号的分析在汽轮机转子故障诊
断中广泛应用。应用小波包分析方法提取振动信号特征值,进一步作为BP神经网络的输入量,建立信号特征与其
故障类型的非线性映射关系,利用神经网络实现故障诊断。仿真结果表明,该方法可以有效地对汽轮机转子故障进
行诊断。

关键词: 汽轮机转子 , 故障诊断 , 小波包 , BP神经网络

Abstract: Turbine rotor fault diagnosis is the key to ensuring the safe operation of the steam turbine. Vibration signal analysis is widely used in turbine rotor fault diagnosis. The wavelet packet analysis method was adopted to extract the vibration signal eigenvalue as the input of BP neural network, the nonlinear mapping relationship between signal features and fault type and realizing the fault diagnosis with BP neural network was established. The simulation results show that this method can effectively diagnosis turbine rotor fault.

Key words: Turbine rotor , Fault diagnosis , Wavelet packet , BP neural network

引用本文

刘暋达,翟春艳,李书臣,苏成利. 汽轮机转子故障诊断算法应用研究[J]. 辽宁石油化工大学学报, 2013, 33(3): 67-69.

LIU Da, ZHAI Chunyan, LI Shuchen, SU Chengli. Application of Algorithm for Turbine Rotor Fault Diagnosis[J]. Journal of Liaoning Petrochemical University, 2013, 33(3): 67-69.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/

               https://journal.lnpu.edu.cn/CN/Y2013/V33/I3/67