辽宁石油化工大学学报

辽宁石油化工大学学报 ›› 2018, Vol. 38 ›› Issue (1): 74-78.DOI: 10.3969/j.issn.1672-6952.2018.01.013

• 计算机与控制 • 上一篇    下一篇

基于DTW 和EMD的孤立词语音识别研究

徐必伟1,苏成利1,杨 微2,曹江涛1   

  1. 1.辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001;2.辽宁装备制造职业技术学院,辽宁沈阳110000
  • 收稿日期:2017-05-04 修回日期:2017-05-20 出版日期:2018-02-28 发布日期:2018-02-27
  • 通讯作者: :苏成利(1977-),男,博士,教授,从事模型预测控制、工业过程的先进控制与优化等方面研究;E-mail:sclwind@sina.com。
  • 作者简介::徐必伟(1993-),男,硕士研究生,从事语音识别方面研究;E-mail:729255967@qq.com。
  • 基金资助:
    :国家自然科学基金项目(61673199);辽宁省高校优秀人才支持计划项目(LJQ2015061)。

Research on Isolated Word Speech Recognition Based on DTW and EMD

Xu Biwei1, Su Chengli1, Yang Wei2, Cao Jiangtao1   

  1. 1.School of Information and Control Engineering, Liaoning Shihua University, Fushun Liaoning 113001, China;  2.Liaoning Equipment Manufacturing Vocational and Technical College, Shenyang Liaoning 110000, China
  • Received:2017-05-04 Revised:2017-05-20 Published:2018-02-28 Online:2018-02-27

摘要: 针对语音识别过程中环境噪声干扰大的问题,提出一种基于经验模态分解(EMD)与动态时间规整 (DTW)相结合的孤立词识别算法。该方法利用EMD 算法,首先将提取的性能不好的语音信号分解成若干个基本模函数(IMF),去掉原始信号中的干扰和噪声。然后,基于DTW 算法,采用短时过零率和短时能量对语音信号进行端点检测,提取语音特征参数后与参考模板进行匹配。将参考模板与待测模板之间的最短路径作为识别结果。仿真结果表明,该算法能够提高语音的识别效率和识别的正确率。

关键词: 语音识别, 经验模态分解, 动态时间规整, 孤立词识别

Abstract:

In order to solve the problem of large interference of environmental noise during speech recognition, an isolated word recognition algorithm based on empirical mode decomposition (EMD) and dynamic time warping (DTW) is proposed. In this method, the EMD algorithm is used to decompose the speech signal with poor performance into several basic mode functions (IMF) and remove the interference and noise in the original signal. Then, based on the DTW algorithm, the short-time zero crossing rate and short-time energy are used to detect the endpoint detection of speech signal. After the speech feature parameters are extracted, the speech signal is matched with the reference template. Finally, the shortest path between the reference template and the template to be measured is used as the recognition result. The simulation results show that the proposed algorithm can improve the recognition efficiency of speech and the accuracy of recognition.

Key words: Speech recognition, Empirical mode decomposition, Dynamic time warping, Isolated word recognition

引用本文

徐必伟,苏成利,杨 微,曹江涛. 基于DTW 和EMD的孤立词语音识别研究[J]. 辽宁石油化工大学学报, 2018, 38(1): 74-78.

Xu Biwei, Su Chengli, Yang Wei, Cao Jiangtao. Research on Isolated Word Speech Recognition Based on DTW and EMD[J]. Journal of Liaoning Petrochemical University, 2018, 38(1): 74-78.

使用本文

0
    /   /   推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文: https://journal.lnpu.edu.cn/CN/10.3969/j.issn.1672-6952.2018.01.013

               https://journal.lnpu.edu.cn/CN/Y2018/V38/I1/74